Zaloguj się

The thermodynamic processes can be classified into reversible and irreversible processes. The processes that can be restored to their initial state are called reversible processes. It is only possible if the process is in quasi-static equilibrium, i.e., it takes place in infinitesimally small steps, and the system remains at equilibrium However, these are ideal processes and do not occur naturally. An ideal system undergoing a reversible process is always in thermodynamic equilibrium within itself and its environment. Any change in its state that occurs can then be reversed by changing the system's conditions by an infinitesimal amount. For instance, the heat flow between two bodies having infinitesimal temperature differences can be reversed by making only a very minute change in one's temperature.

On the contrary, an irreversible process is usually what we encounter in reality these processes, the system, and the surroundings cannot be restored to their original states. All natural processes are irreversible. The sign of an irreversible process comes from the finite gradient between the states occurring in the actual process. For example, when heat flows from one object to another, there is a finite temperature difference (gradient) between the two objects. More importantly, the system most likely is not at equilibrium or in a well-defined state at any given moment of the process. This phenomenon is called irreversibility.

Intuitively, heat always flows from a hotter object to a colder one. When we hold an ice cube in our hands, we feel cold because the heat has left our hands and transferred into the ice cube. The opposite is true when we hold one end of a metal rod while keeping the other end over a fire. Based on the experiments on spontaneous heat transfer, the following statement summarizes the governing principle: Heat never flows spontaneously from a colder object to a hotter object. This statement is referred to as the Clausius statement of the second law of thermodynamics.

Tagi
Reversible ProcessesIrreversible ProcessesThermodynamic EquilibriumQuasi static EquilibriumHeat FlowInfinitesimal ChangesNatural ProcessesTemperature GradientIrreversibilityClausius StatementSecond Law Of Thermodynamics

Z rozdziału 21:

article

Now Playing

21.1 : Reversible and Irreversible Processes

The Second Law of Thermodynamics

3.9K Wyświetleń

article

21.2 : Silniki cieplne

The Second Law of Thermodynamics

2.6K Wyświetleń

article

21.3 : Silnik spalinowy

The Second Law of Thermodynamics

792 Wyświetleń

article

21.4 : Cykl Otto i Diesel

The Second Law of Thermodynamics

1.1K Wyświetleń

article

21.5 : Lodówki i pompy ciepła

The Second Law of Thermodynamics

2.1K Wyświetleń

article

21.6 : Twierdzenia drugiej zasady termodynamiki

The Second Law of Thermodynamics

2.4K Wyświetleń

article

21.7 : Cykl Carnota

The Second Law of Thermodynamics

2.6K Wyświetleń

article

21.8 : Wydajność cyklu Carnota

The Second Law of Thermodynamics

2.4K Wyświetleń

article

21.9 : Cykl Carnota i druga zasada termodynamiki

The Second Law of Thermodynamics

2.3K Wyświetleń

article

21.10 : Entropia

The Second Law of Thermodynamics

2.4K Wyświetleń

article

21.11 : Zmiana entropii w procesach odwracalnych

The Second Law of Thermodynamics

2.4K Wyświetleń

article

21.12 : Entropia i druga zasada termodynamiki

The Second Law of Thermodynamics

2.6K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone