The thermodynamic processes can be classified into reversible and irreversible processes. The processes that can be restored to their initial state are called reversible processes. It is only possible if the process is in quasi-static equilibrium, i.e., it takes place in infinitesimally small steps, and the system remains at equilibrium However, these are ideal processes and do not occur naturally. An ideal system undergoing a reversible process is always in thermodynamic equilibrium within itself and its environment. Any change in its state that occurs can then be reversed by changing the system's conditions by an infinitesimal amount. For instance, the heat flow between two bodies having infinitesimal temperature differences can be reversed by making only a very minute change in one's temperature.

On the contrary, an irreversible process is usually what we encounter in reality these processes, the system, and the surroundings cannot be restored to their original states. All natural processes are irreversible. The sign of an irreversible process comes from the finite gradient between the states occurring in the actual process. For example, when heat flows from one object to another, there is a finite temperature difference (gradient) between the two objects. More importantly, the system most likely is not at equilibrium or in a well-defined state at any given moment of the process. This phenomenon is called irreversibility.

Intuitively, heat always flows from a hotter object to a colder one. When we hold an ice cube in our hands, we feel cold because the heat has left our hands and transferred into the ice cube. The opposite is true when we hold one end of a metal rod while keeping the other end over a fire. Based on the experiments on spontaneous heat transfer, the following statement summarizes the governing principle: Heat never flows spontaneously from a colder object to a hotter object. This statement is referred to as the Clausius statement of the second law of thermodynamics.

Tags
Reversible ProcessesIrreversible ProcessesThermodynamic EquilibriumQuasi static EquilibriumHeat FlowInfinitesimal ChangesNatural ProcessesTemperature GradientIrreversibilityClausius StatementSecond Law Of Thermodynamics

장에서 21:

article

Now Playing

21.1 : Reversible and Irreversible Processes

The Second Law of Thermodynamics

3.8K Views

article

21.2 : 히트 엔진

The Second Law of Thermodynamics

2.4K Views

article

21.3 : 내연 기관

The Second Law of Thermodynamics

749 Views

article

21.4 : 오토와 디젤 사이클

The Second Law of Thermodynamics

973 Views

article

21.5 : 냉장고 및 히트 펌프

The Second Law of Thermodynamics

2.0K Views

article

21.6 : 열역학 제2법칙에 대한 진술

The Second Law of Thermodynamics

2.4K Views

article

21.7 : 카르노 사이클

The Second Law of Thermodynamics

2.5K Views

article

21.8 : Carnot Cycle의 효율성

The Second Law of Thermodynamics

2.3K Views

article

21.9 : 카르노 사이클(Carnot Cycle)과 열역학 제2법칙(Second Law of Thermodynamics)

The Second Law of Thermodynamics

2.3K Views

article

21.10 : 엔트로피

The Second Law of Thermodynamics

2.3K Views

article

21.11 : 가역적 과정에서의 엔트로피 변화

The Second Law of Thermodynamics

2.4K Views

article

21.12 : 엔트로피와 열역학 제2법칙

The Second Law of Thermodynamics

2.5K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유