Zaloguj się

James Clerk Maxwell formulated a single theory combining all the electric and magnetic effects scientists knew during that time, calling the phenomena his theory predicted “Electromagnetic waves”. He brought together all the work that had been done by brilliant physicists such as Oersted, Coulomb, Gauss, and Faraday and added his own insights to develop the overarching theory of electromagnetism. Maxwell’s equations, combined with the Lorentz force law, encompass all the laws of electricity and magnetism. However, the symmetry that Maxwell introduced into his mathematical framework may not be immediately apparent; Faraday’s law describes how changing magnetic fields produce electric fields. The displacement current introduced by Maxwell instead results from a changing electric field and accounts for a changing electric field producing a magnetic field. The equations for the effects of both changing electric fields and changing magnetic fields differ in form only where the absence of magnetic monopoles leads to missing terms. This symmetry between the effects of changing magnetic and electric fields is essential in explaining the nature of electromagnetic waves.

To see how the symmetry introduced by Maxwell accounts for the existence of combined electric and magnetic waves that propagate through space, imagine a time-varying magnetic field produced by a high-frequency alternating current. From Faraday’s law, the changing magnetic field through a surface induces a time-varying electric field at the boundary of that surface. The displacement current source for the electric field, like Faraday’s law source for the magnetic field, produces only closed loops of field lines, because of the mathematical symmetry involved in the equations for induced electric and induced magnetic fields. In turn, the changing electric field creates a magnetic field according to the modified Ampère’s law. This changing field induces another electric field, which in turn induces another magnetic field, and so on. We then have a self-continuing process that leads to the creation of time-varying electric and magnetic fields in regions farther and farther away from the point where they first originated. This process may be visualized as the propagation of an electromagnetic wave through space.

Tagi

Electromagnetic WavesJames Clerk MaxwellElectromagnetismMaxwell s EquationsLorentz Force LawFaraday s LawDisplacement CurrentMagnetic MonopolesElectric FieldsMagnetic FieldsAlternating CurrentMathematical SymmetryInduced FieldsAmp re s LawWave Propagation

Z rozdziału 33:

article

Now Playing

33.1 : Electromagnetic Waves

Electromagnetic Waves

8.4K Wyświetleń

article

33.2 : Generowanie promieniowania elektromagnetycznego

Electromagnetic Waves

2.4K Wyświetleń

article

33.3 : Widmo elektromagnetyczne

Electromagnetic Waves

14.3K Wyświetleń

article

33.4 : Równanie fali elektromagnetycznej

Electromagnetic Waves

922 Wyświetleń

article

33.5 : Płaskie fale elektromagnetyczne I

Electromagnetic Waves

3.5K Wyświetleń

article

33.6 : Płaskie fale elektromagnetyczne II

Electromagnetic Waves

3.0K Wyświetleń

article

33.7 : Prędkość rozchodzenia się fal elektromagnetycznych

Electromagnetic Waves

3.3K Wyświetleń

article

33.8 : Fale elektromagnetyczne w materii

Electromagnetic Waves

2.9K Wyświetleń

article

33.9 : Energia przenoszona przez fale elektromagnetyczne

Electromagnetic Waves

2.8K Wyświetleń

article

33.10 : Intensywność fal elektromagnetycznych

Electromagnetic Waves

4.3K Wyświetleń

article

33.11 : Pęd i ciśnienie promieniowania

Electromagnetic Waves

1.8K Wyświetleń

article

33.12 : Ciśnienie promieniowania: rozwiązywanie problemów

Electromagnetic Waves

274 Wyświetleń

article

33.13 : Stojące fale elektromagnetyczne

Electromagnetic Waves

1.4K Wyświetleń

article

33.14 : Fale stojące we wnęce

Electromagnetic Waves

802 Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone