Oturum Aç

James Clerk Maxwell formulated a single theory combining all the electric and magnetic effects scientists knew during that time, calling the phenomena his theory predicted “Electromagnetic waves”. He brought together all the work that had been done by brilliant physicists such as Oersted, Coulomb, Gauss, and Faraday and added his own insights to develop the overarching theory of electromagnetism. Maxwell’s equations, combined with the Lorentz force law, encompass all the laws of electricity and magnetism. However, the symmetry that Maxwell introduced into his mathematical framework may not be immediately apparent; Faraday’s law describes how changing magnetic fields produce electric fields. The displacement current introduced by Maxwell instead results from a changing electric field and accounts for a changing electric field producing a magnetic field. The equations for the effects of both changing electric fields and changing magnetic fields differ in form only where the absence of magnetic monopoles leads to missing terms. This symmetry between the effects of changing magnetic and electric fields is essential in explaining the nature of electromagnetic waves.

To see how the symmetry introduced by Maxwell accounts for the existence of combined electric and magnetic waves that propagate through space, imagine a time-varying magnetic field produced by a high-frequency alternating current. From Faraday’s law, the changing magnetic field through a surface induces a time-varying electric field at the boundary of that surface. The displacement current source for the electric field, like Faraday’s law source for the magnetic field, produces only closed loops of field lines, because of the mathematical symmetry involved in the equations for induced electric and induced magnetic fields. In turn, the changing electric field creates a magnetic field according to the modified Ampère’s law. This changing field induces another electric field, which in turn induces another magnetic field, and so on. We then have a self-continuing process that leads to the creation of time-varying electric and magnetic fields in regions farther and farther away from the point where they first originated. This process may be visualized as the propagation of an electromagnetic wave through space.

Etiketler
Electromagnetic WavesJames Clerk MaxwellElectromagnetismMaxwell s EquationsLorentz Force LawFaraday s LawDisplacement CurrentMagnetic MonopolesElectric FieldsMagnetic FieldsAlternating CurrentMathematical SymmetryInduced FieldsAmp re s LawWave Propagation

Bölümden 33:

article

Now Playing

33.1 : Electromagnetic Waves

Elektromanyetik Dalgalar

8.3K Görüntüleme Sayısı

article

33.2 : Elektromanyetik Radyasyonların Üretilmesi

Elektromanyetik Dalgalar

2.3K Görüntüleme Sayısı

article

33.3 : Elektromanyetik Spektrum

Elektromanyetik Dalgalar

13.4K Görüntüleme Sayısı

article

33.4 : Elektromanyetik Dalga Denklemi

Elektromanyetik Dalgalar

900 Görüntüleme Sayısı

article

33.5 : Düzlem Elektromanyetik Dalgalar I

Elektromanyetik Dalgalar

3.5K Görüntüleme Sayısı

article

33.6 : Düzlem Elektromanyetik Dalgalar II

Elektromanyetik Dalgalar

3.0K Görüntüleme Sayısı

article

33.7 : Elektromanyetik Dalgaların Yayılma Hızı

Elektromanyetik Dalgalar

3.3K Görüntüleme Sayısı

article

33.8 : Maddedeki Elektromanyetik Dalgalar

Elektromanyetik Dalgalar

2.9K Görüntüleme Sayısı

article

33.9 : Elektromanyetik Dalgaların Taşıdığı Enerji

Elektromanyetik Dalgalar

2.7K Görüntüleme Sayısı

article

33.10 : Elektromanyetik Dalgaların Yoğunluğu

Elektromanyetik Dalgalar

4.2K Görüntüleme Sayısı

article

33.11 : Momentum ve Radyasyon Basıncı

Elektromanyetik Dalgalar

1.8K Görüntüleme Sayısı

article

33.12 : Radyasyon Basıncı: Problem Çözme

Elektromanyetik Dalgalar

258 Görüntüleme Sayısı

article

33.13 : Duran Elektromanyetik Dalgalar

Elektromanyetik Dalgalar

1.4K Görüntüleme Sayısı

article

33.14 : Bir boşlukta duran dalgalar

Elektromanyetik Dalgalar

780 Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır