Zaloguj się

The divergence of a vector is a measure of how much the vector spreads out (diverges) from a point. For example, an electric field vector diverges from the positive charge and converges at the negative charge. The divergence of an electric field is derived using Gauss's law and is equal to the charge density divided by the permittivity of space. Mathematically, it is expressed as

Equation1

If the divergence of an electric field is zero at a given point, the charge density at that point is also zero. The expression defines the sources of the electric field intensity and hence provides a method to calculate the electric field intensity.

The curl of a vector is a measure of how much the vector swirls around the point of observation. For static charges, the electric field lines do not circulate back on themselves; therefore, the curl of the electric field is zero. This can be expressed mathematically using Stokes' theorem, which states that the surface integral of the curl of an electric field equals the line integral of the electric field along a closed path. Now, since the line integral of the electric field along any closed path is zero, this implies that the curl of the electric field is also zero.

The electrostatic field is irrotational (curl-free) and has non-zero divergence for static charge distribution. This infers that the electrostatic field is generated by a scalar source alone, that is, a charge or a charge density.

Tagi
DivergenceCurlElectric FieldGauss s LawCharge DensityPermittivity Of SpaceElectric Field IntensityStatic ChargesStokes TheoremElectrostatic FieldIrrotationalCharge Distribution

Z rozdziału 23:

article

Now Playing

23.13 : Divergence and Curl of Electric Field

Gauss's Law

5.0K Wyświetleń

article

23.1 : Strumień elektryczny

Gauss's Law

7.3K Wyświetleń

article

23.2 : Obliczanie strumienia elektrycznego

Gauss's Law

1.6K Wyświetleń

article

23.3 : Prawo Gaussa

Gauss's Law

6.7K Wyświetleń

article

23.4 : Prawo Gaussa: rozwiązywanie problemów

Gauss's Law

1.5K Wyświetleń

article

23.5 : Prawo Gaussa: symetria sferyczna

Gauss's Law

7.0K Wyświetleń

article

23.6 : Prawo Gaussa: symetria cylindryczna

Gauss's Law

7.1K Wyświetleń

article

23.7 : Prawo Gaussa: symetria płaska

Gauss's Law

7.5K Wyświetleń

article

23.8 : Pole elektryczne wewnątrz przewodnika

Gauss's Law

5.7K Wyświetleń

article

23.9 : Ładowanie na przewodniku

Gauss's Law

4.3K Wyświetleń

article

23.10 : Pole elektryczne na powierzchni przewodnika

Gauss's Law

4.4K Wyświetleń

article

23.11 : Pole elektryczne niejednorodnie naładowanej kuli

Gauss's Law

1.3K Wyświetleń

article

23.12 : Pole elektryczne równoległych płyt przewodzących

Gauss's Law

725 Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone