Anmelden

The divergence of a vector is a measure of how much the vector spreads out (diverges) from a point. For example, an electric field vector diverges from the positive charge and converges at the negative charge. The divergence of an electric field is derived using Gauss's law and is equal to the charge density divided by the permittivity of space. Mathematically, it is expressed as

Equation1

If the divergence of an electric field is zero at a given point, the charge density at that point is also zero. The expression defines the sources of the electric field intensity and hence provides a method to calculate the electric field intensity.

The curl of a vector is a measure of how much the vector swirls around the point of observation. For static charges, the electric field lines do not circulate back on themselves; therefore, the curl of the electric field is zero. This can be expressed mathematically using Stokes' theorem, which states that the surface integral of the curl of an electric field equals the line integral of the electric field along a closed path. Now, since the line integral of the electric field along any closed path is zero, this implies that the curl of the electric field is also zero.

The electrostatic field is irrotational (curl-free) and has non-zero divergence for static charge distribution. This infers that the electrostatic field is generated by a scalar source alone, that is, a charge or a charge density.

Tags
DivergenceCurlElectric FieldGauss s LawCharge DensityPermittivity Of SpaceElectric Field IntensityStatic ChargesStokes TheoremElectrostatic FieldIrrotationalCharge Distribution

Aus Kapitel 23:

article

Now Playing

23.13 : Divergence and Curl of Electric Field

Gauss's Law

5.0K Ansichten

article

23.1 : Elektrisches Flussmittel

Gauss's Law

7.3K Ansichten

article

23.2 : Berechnung des elektrischen Flusses

Gauss's Law

1.6K Ansichten

article

23.3 : Gaußsches Gesetz

Gauss's Law

6.7K Ansichten

article

23.4 : Gaußsches Gesetz: Problemlösung

Gauss's Law

1.5K Ansichten

article

23.5 : Gaußsches Gesetz: Sphärische Symmetrie

Gauss's Law

7.0K Ansichten

article

23.6 : Gaußsches Gesetz: Zylindrische Symmetrie

Gauss's Law

7.1K Ansichten

article

23.7 : Gaußsches Gesetz: Planare Symmetrie

Gauss's Law

7.5K Ansichten

article

23.8 : Elektrisches Feld in einem Leiter

Gauss's Law

5.7K Ansichten

article

23.9 : Aufladen auf einem Leiter

Gauss's Law

4.3K Ansichten

article

23.10 : Elektrisches Feld an der Oberfläche eines Leiters

Gauss's Law

4.4K Ansichten

article

23.11 : Elektrisches Feld einer ungleichmäßig geladenen Kugel

Gauss's Law

1.3K Ansichten

article

23.12 : Elektrisches Feld von parallel leitenden Platten

Gauss's Law

724 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten