JoVE Logo

Zaloguj się

2.17 : Cross Product

The cross product is a fundamental concept in vector algebra that is a vector operation on two different vectors to obtain a third vector. Unlike the scalar product, the cross product results in a vector quantity perpendicular to both the original vectors.

The magnitude of the cross product is obtained by multiplying the magnitude of both the vectors and the sine of the angle between them. This means that a larger angle between the vectors will lead to a greater magnitude of the cross product.

Equation 1

The direction of the resultant vector is determined by using the right-hand rule. If we curl the fingers of the right hand from vector A to vector B, then the direction of the thumb represents the direction of the resultant vector. In other words, the direction of the cross product is perpendicular to the plane containing vectors A and B.

It is important to note that the cross product of vectors is non-commutative. That is, the resultant vector for the cross product of vector A with vector B is equal in magnitude but opposite in direction to that of the cross product of vector B with vector A. However, the cross product obeys the associative law and distributive laws of addition. This means that the cross product of a sum of vectors equals the sum of the cross products of each vector.

In conclusion, the cross product is a fundamental concept in vector algebra that has widespread applications in physics and engineering, such as calculating the moment of a force about a point, calculating the torque of a force about an axis, and calculating the angular momentum of a body about an axis.

Tagi

Cross ProductVector AlgebraVector OperationPerpendicular VectorsMagnitudeSine Of AngleRight hand RuleNon commutativeAssociative LawDistributive LawsPhysics ApplicationsEngineering ApplicationsTorque CalculationAngular Momentum

Z rozdziału 2:

article

Now Playing

2.17 : Cross Product

Force Vectors

223 Wyświetleń

article

2.1 : Skalar i wektory

Force Vectors

1.2K Wyświetleń

article

2.2 : Operacje wektorowe

Force Vectors

1.1K Wyświetleń

article

2.3 : Wprowadzenie do siły

Force Vectors

465 Wyświetleń

article

2.4 : Klasyfikacja siły

Force Vectors

1.1K Wyświetleń

article

2.5 : Dodawanie wektorów sił

Force Vectors

756 Wyświetleń

article

2.6 : Dwuwymiarowy układ sił

Force Vectors

871 Wyświetleń

article

2.7 : Dwuwymiarowy układ sił: rozwiązywanie problemów

Force Vectors

539 Wyświetleń

article

2.8 : Notacja skalarna

Force Vectors

651 Wyświetleń

article

2.9 : Kartezjańska notacja wektorowa

Force Vectors

732 Wyświetleń

article

2.10 : Kierunek cosinusów wektora

Force Vectors

460 Wyświetleń

article

2.11 : Trójwymiarowy układ sił

Force Vectors

2.0K Wyświetleń

article

2.12 : Trójwymiarowy układ sił: rozwiązywanie problemów

Force Vectors

622 Wyświetleń

article

2.13 : Wektory położenia

Force Vectors

790 Wyświetleń

article

2.14 : Wektor siły wzdłuż linii

Force Vectors

468 Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone