S'identifier

The cross product is a fundamental concept in vector algebra that is a vector operation on two different vectors to obtain a third vector. Unlike the scalar product, the cross product results in a vector quantity perpendicular to both the original vectors.

The magnitude of the cross product is obtained by multiplying the magnitude of both the vectors and the sine of the angle between them. This means that a larger angle between the vectors will lead to a greater magnitude of the cross product.

Equation 1

The direction of the resultant vector is determined by using the right-hand rule. If we curl the fingers of the right hand from vector A to vector B, then the direction of the thumb represents the direction of the resultant vector. In other words, the direction of the cross product is perpendicular to the plane containing vectors A and B.

It is important to note that the cross product of vectors is non-commutative. That is, the resultant vector for the cross product of vector A with vector B is equal in magnitude but opposite in direction to that of the cross product of vector B with vector A. However, the cross product obeys the associative law and distributive laws of addition. This means that the cross product of a sum of vectors equals the sum of the cross products of each vector.

In conclusion, the cross product is a fundamental concept in vector algebra that has widespread applications in physics and engineering, such as calculating the moment of a force about a point, calculating the torque of a force about an axis, and calculating the angular momentum of a body about an axis.

Tags

Cross ProductVector AlgebraVector OperationPerpendicular VectorsMagnitudeSine Of AngleRight hand RuleNon commutativeAssociative LawDistributive LawsPhysics ApplicationsEngineering ApplicationsTorque CalculationAngular Momentum

Du chapitre 2:

article

Now Playing

2.17 : Cross Product

Force Vectors

184 Vues

article

2.1 : Scalaire et vecteurs

Force Vectors

1.1K Vues

article

2.2 : Opérations vectorielles

Force Vectors

1.1K Vues

article

2.3 : Introduction à la force

Force Vectors

427 Vues

article

2.4 : Force Classification

Force Vectors

1.0K Vues

article

2.5 : Addition vectorielle des forces

Force Vectors

546 Vues

article

2.6 : Système de force bidimensionnel

Force Vectors

811 Vues

article

2.7 : Système de force bidimensionnel : résolution de problèmes

Force Vectors

496 Vues

article

2.8 : Notation scalaire

Force Vectors

605 Vues

article

2.9 : Notation vectorielle cartésienne

Force Vectors

663 Vues

article

2.10 : Cosinus directeurs d’un vecteur

Force Vectors

375 Vues

article

2.11 : Système de force tridimensionnel

Force Vectors

1.9K Vues

article

2.12 : Système de force tridimensionnelle : résolution de problèmes

Force Vectors

572 Vues

article

2.13 : Vecteurs de position

Force Vectors

674 Vues

article

2.14 : Vecteur de force le long d’une droite

Force Vectors

428 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.