Zaloguj się

Flexible cables are commonly used in various applications for support and load transmission. Consider a cable fixed at two points and subjected to multiple vertically concentrated loads. Determine the shape of the cable and the tension in each portion of the cable, given the horizontal distances between the loads and supports.

Figure 1

For the analysis, the cable is assumed to have the following properties:

  1. Flexible, allowing it to change shape under the influence of applied loads.
  2. Inextensible, meaning its length does not change under tension.
  3. A negligible weight that implies that the cable's self-weight does not significantly impact its behavior.

The cable consists of several straight-line segments, with each segment subjected to a constant tensile force. In order to determine the reaction forces at the supports, a free-body diagram of the cable can be drawn. However, in the given case, the number of unknown reaction components typically exceeds the number of available equilibrium equations. An additional equation is required. Consider point D on the cable at a known distance from the supports to obtain an additional equation. By drawing a free-body diagram of segment AD and using the moment equilibrium equation at point D, another equation that helps solve the system can be derived.

Equation 1

The vertical distance from support A to each concentrated load can be determined with the known reaction forces. This can be achieved by recalling the equilibrium equation, which states that the sum of the vertical forces acting on the cable must equal zero. Once the vertical distances have been determined, the tension in each cable segment can be calculated. The tension is at its maximum when the segment has the largest inclination angle.

Equation 2

Equation 3

Tagi
Cable AnalysisConcentrated LoadsFlexible CablesTension CalculationFree body DiagramEquilibrium EquationsReaction ForcesVertical DistancesInextensible CableMoment EquilibriumTensile Force

Z rozdziału 7:

article

Now Playing

7.11 : Cable Subjected to Concentrated Loads

Internal Forces

726 Wyświetleń

article

7.1 : Konwencja znaków

Internal Forces

1.8K Wyświetleń

article

7.2 : Siła normalna i tnąca

Internal Forces

1.9K Wyświetleń

article

7.3 : Momenty zginające i skręcające

Internal Forces

3.2K Wyświetleń

article

7.4 : Obciążenia wewnętrzne w członach konstrukcyjnych: rozwiązywanie problemów

Internal Forces

1.2K Wyświetleń

article

7.5 : Belki

Internal Forces

1.2K Wyświetleń

article

7.6 : Wykres ścinania

Internal Forces

645 Wyświetleń

article

7.7 : Wykres momentu zginającego

Internal Forces

846 Wyświetleń

article

7.8 : Zależność między rozłożonym obciążeniem a ścinaniem

Internal Forces

538 Wyświetleń

article

7.9 : Zależność między momentem ścinającym a zginaniem

Internal Forces

857 Wyświetleń

article

7.10 : Wykres momentu ścinającego i zginającego: rozwiązywanie problemów

Internal Forces

1.1K Wyświetleń

article

7.12 : poddany obciążeniu rozłożonemu

Internal Forces

569 Wyświetleń

article

7.13 : poddany własnemu ciężarowi

Internal Forces

361 Wyświetleń

article

7.14 : : Rozwiązywanie problemów

Internal Forces

287 Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone