S'identifier

Flexible cables are commonly used in various applications for support and load transmission. Consider a cable fixed at two points and subjected to multiple vertically concentrated loads. Determine the shape of the cable and the tension in each portion of the cable, given the horizontal distances between the loads and supports.

Figure 1

For the analysis, the cable is assumed to have the following properties:

  1. Flexible, allowing it to change shape under the influence of applied loads.
  2. Inextensible, meaning its length does not change under tension.
  3. A negligible weight that implies that the cable's self-weight does not significantly impact its behavior.

The cable consists of several straight-line segments, with each segment subjected to a constant tensile force. In order to determine the reaction forces at the supports, a free-body diagram of the cable can be drawn. However, in the given case, the number of unknown reaction components typically exceeds the number of available equilibrium equations. An additional equation is required. Consider point D on the cable at a known distance from the supports to obtain an additional equation. By drawing a free-body diagram of segment AD and using the moment equilibrium equation at point D, another equation that helps solve the system can be derived.

Equation 1

The vertical distance from support A to each concentrated load can be determined with the known reaction forces. This can be achieved by recalling the equilibrium equation, which states that the sum of the vertical forces acting on the cable must equal zero. Once the vertical distances have been determined, the tension in each cable segment can be calculated. The tension is at its maximum when the segment has the largest inclination angle.

Equation 2

Equation 3

Tags
Cable AnalysisConcentrated LoadsFlexible CablesTension CalculationFree body DiagramEquilibrium EquationsReaction ForcesVertical DistancesInextensible CableMoment EquilibriumTensile Force

Du chapitre 7:

article

Now Playing

7.11 : Cable Subjected to Concentrated Loads

Internal Forces

726 Vues

article

7.1 : Convention de signature

Internal Forces

1.8K Vues

article

7.2 : Force normale et force de cisaillement

Internal Forces

1.9K Vues

article

7.3 : Moments de flexion et de torsion

Internal Forces

3.2K Vues

article

7.4 : Chargements internes dans les éléments structurels : résolution de problèmes

Internal Forces

1.2K Vues

article

7.5 : Poutres

Internal Forces

1.2K Vues

article

7.6 : Diagramme de cisaillement

Internal Forces

645 Vues

article

7.7 : Diagramme du moment de flexion

Internal Forces

846 Vues

article

7.8 : Relation entre la charge répartie et le cisaillement

Internal Forces

538 Vues

article

7.9 : Relation entre le moment de cisaillement et le moment de flexion

Internal Forces

857 Vues

article

7.10 : Diagramme des moments de cisaillement et de flexion : résolution de problèmes

Internal Forces

1.1K Vues

article

7.12 : Câble soumis à une charge répartie

Internal Forces

569 Vues

article

7.13 : Câble soumis à son propre poids

Internal Forces

361 Vues

article

7.14 : Câble : résolution de problèmes

Internal Forces

287 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.