Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Protokół
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

A protocol for isolating and activating spermatids from male C. elegans is described here. Cutting the posterior end of male releases spermatids. The spermatids can be activated by addition of protease.

Streszczenie

Males and hermaphrodites are the two naturally found sexual forms in the nematode C. elegans. The amoeboid sperm are produced by both males and hermaphrodites. In the earlier phase of gametogenesis, the germ cells of hermaphrodites differentiate into limited number of sperm - around 300 - and are stored in a small 'bag' called the spermatheca. Later on, hermaphrodites continually produce oocytes1. In contrast, males produce exclusively sperm throughout their adulthood. The males produce so much sperm that it accounts for >50% of the total cells in a typical adult worm2. Therefore, isolating sperm from males is easier than from that of hermaphrodites.

Only a small proportion of males are naturally generated due to spontaneous non-disjunction of X chromosome3. Crossing hermaphrodites with males or more conveniently, the introduction of mutations to give rise to Him (High Incidence of Males) phenotype are some of strategies through which one can enrich the male population3.

Males can be easily distinguished from hermaphrodites by observing the tail morphology4. Hermaphrodite's tail is pointed, whereas male tail is rounded with mating structures.

Cutting the tail releases vast number of spermatids stored inside the male reproductive tract. Dissection is performed under a stereo microscope using 27 gauge needles. Since spermatids are not physically connected with any other cells, hydraulic pressure expels internal contents of male body, including spermatids2.

Males are directly dissected on a small drop of 'Sperm Medium'. Spermatids are sensitive to alteration in the pH. Hence, HEPES, a compound with good buffering capacity is used in sperm media. Glucose and other salts present in sperm media help maintain osmotic pressure to maintain the integrity of sperm.

Post-meiotic differentiation of spermatids into spermatozoa is termed spermiogenesis or sperm activation. Shakes5, and Nelson6 previously showed that round spermatids can be induced to differentiate into spermatozoa by adding various activating compounds including Pronase E. Here we demonstrate in vitro spermiogenesis of C. elegans spermatids using Pronase E.

Successful spermiogenesis is pre-requisite for fertility and hence the mutants defective in spermiogenesis are sterile. Hitherto several mutants have been shown to be defective specifically in spermiogenesis process7. Abnormality found during in vitro activation of novel Spe (Spermatogenesis defective) mutants would help us discover additional players participating in this event.

Protokół

1) Enrichment of male population

  1. Depending on the experimental need, large numbers of males can be obtained by employing one of the following strategies:
    1. large population of wild type males can be obtained by crossing 5 wild type males and 1 hermaphrodite on a small lawn of OP50 seeded at the center of NGM plate. Roughly 50% of the succeeding generation will be wild type males.
    2. him-5(e1490) or him-8(e1489) hermaphrodites throw large number of males. him-5 and him-8 males are fertile and there is no obvious defect in sperm morphology and function. So, him-5 or him-8

Dyskusje

In addition to analyzing Spe mutants, this protocol has other important applications, such as analyzing sperm morphology with aging. Spermatids and spermatozoa isolated using this protocol can be used in other downstream experiments such as, immunostaining of wild type and mutant sperm8, 9, motility of sperm on slides10, physiological measurements9, 11, or even artificial insemination12.

Ujawnienia

No conflicts of interest declared.

Podziękowania

We thank Samuel Ward, Diane C. Shakes and Gregory Nelson for pioneering this technique. We thank Pavan Kadandale and Brian Geldziler for videos showing activated spermatozoa; members of the Singson lab for helpful discussions; CGC for strains and NIH for supporting us through grant (R01HD054681).

Materiały

Material NameTypeCompanyCatalogue NumberComment
NameCompanyCatalog NumberComments
Tuberculin syringe Becton Dickinson309623Syringe: 1 ml, needle:
27G X ½ in
Pap pen Zymed00-8888 
VWR VistaVision
HistoBond
Microscope Slides
 VWR International16004-406Dimension:
75X25X1mm
Cover glass VWR International48366045 
Protease SigmaP-6911 

Odniesienia

  1. Kimble, J., Crittenden, S. L. Controls of germline stem cells, entry into meiosis, and the Sperm/Oocyte decision in Caenorhabditis elegans. Annual Review of Cell and Developmental Biology. 23, 405-433 (2007).
  2. Lhernault, S. W., Roberts, T. M. .

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Caenorhabditis ElegansIsolationIn Vitro ActivationSpermMalesHermaphroditesGametogenesisSpermathecaOocytesX Chromosome Non disjunctionHim PhenotypeTail MorphologyMating StructuresDissectionStereo MicroscopeSpermatids

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone