Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The present video demonstrates a method which takes advantage of the combination of electroporation and confocal microscopy to perform live imaging on individual neural progenitor cells in the developing zebrafish forebrain. In vivo analysis of the development of forebrain neural progenitor cells at a clonal level can be achieved in this way.
Precise patterns of division, migration and differentiation of neural progenitor cells are crucial for proper brain development and function1,2. To understand the behavior of neural progenitor cells in the complex in vivo environment, time-lapse live imaging of neural progenitor cells in an intact brain is critically required. In this video, we exploit the unique features of zebrafish embryos to visualize the development of forebrain neural progenitor cells in vivo. We use electroporation to genetically and sparsely label individual neural progenitor cells. Briefly, DNA constructs coding for fluorescent markers were injected into the forebrain ventricle of 22 hours post fertilization (hpf) zebrafish embryos and electric pulses were delivered immediately. Six hours later, the electroporated zebrafish embryos were mounted with low melting point agarose in glass bottom culture dishes. Fluorescently labeled neural progenitor cells were then imaged for 36hours with fixed intervals under a confocal microscope using water dipping objective lens. The present method provides a way to gain insights into the in vivo development of forebrain neural progenitor cells and can be applied to other parts of the central nervous system of the zebrafish embryo.
1. Preparation of Zebrafish Embryos
2. Preparation for Electroporation
3. Electroporation
4. Mounting and Time-lapse Live Imaging
5. Representative Results
Shown in Figure 2 are selected frames of a time-lapse confocal live imaging of the embryo electroporated of EF1α-GFF + UAS-E1B-EGFP at 22 hpf.
Figure 1. Apparatus set-up. (A) The assembly of electroporation equipments: the Grass SD9 square pulse stimulator(i), the left micromanipulator (ii), the electrodes (iii), the Zeiss dissecting microscope (iv), the injection needle (v), the right micromanipulator (vi) and the Narishige IM 300 microinjector (vii). (B) The relative position of the electrodes (i), the forebrain ventricle (ii) and the injection needle (iii). Note the red-colored DNA solution has been injected into the forebrain ventricle. (C) The assembly of live imaging on Nikon C1 confocal microscope: the temperature controller (i), the water dipping objective len (ii) and the electroporated embryo embedded in low melting point agarose in a glass bottom culture dish (iii) (D) Image of a pulled and cut needle for microinjection of DNA.
Figure 2. Selected frames of an 18-hour time-lapse confocal live imaging of the embryo electroporated with EF1α-GFF + UAS-E1B-EGFP at 22 hpf. Ventricle surface is on the bottom side of each image frame. Scale bar represents 10 μm.
Access restricted. Please log in or start a trial to view this content.
In this video, we demonstrate a method for time-lapse live imaging of neural progenitor cells at a clonal level in the developing zebrafish forebrain. We tested and modified the existing electroporation protocols4-6 to genetically and fluorescently label individual neural progenitor cells. A lineage tree composed of clonally related progeny cells can be established since only a few cells were sparsely labeled with a relative low voltage of electroporation. In addition to EGFP, the neural progenitor cells can b...
Access restricted. Please log in or start a trial to view this content.
No conflicts of interest declared.
This work was supported by theNIH grantNS042626. We thank Kurt Thorn and UCSF Nikon Imaging center for assistance with imaging.
Access restricted. Please log in or start a trial to view this content.
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone