Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, we present our established method to reprogram human somatic cells into transgene-free human iPSCs with Sendai virus, which shows consistent outcome and enhanced efficiency.
A few years ago, the establishment of human induced pluripotent stem cells (iPSCs) ushered in a new era in biomedicine. Potential uses of human iPSCs include modeling pathogenesis of human genetic diseases, autologous cell therapy after gene correction, and personalized drug screening by providing a source of patient-specific and symptom relevant cells. However, there are several hurdles to overcome, such as eliminating the remaining reprogramming factor transgene expression after human iPSCs production. More importantly, residual transgene expression in undifferentiated human iPSCs could hamper proper differentiations and misguide the interpretation of disease-relevant in vitro phenotypes. With this reason, integration-free and/or transgene-free human iPSCs have been developed using several methods, such as adenovirus, the piggyBac system, minicircle vector, episomal vectors, direct protein delivery and synthesized mRNA. However, efficiency of reprogramming using integration-free methods is quite low in most cases.
Here, we present a method to isolate human iPSCs by using Sendai-virus (RNA virus) based reprogramming system. This reprogramming method shows consistent results and high efficiency in cost-effective manner.
Human embryonic stem cells (hESCs) have a capacity to self-renew in vitro and have pluripotency, which could be potentially useful for disease modeling, for drug screening, and to develop cell-based therapies to treat disease and tissue injuries. However, hESCs have a limitation for cell replacement therapy because of immunological, oncological and ethical barriers, and to study disease related genes, disease-specific hESCs could be isolated through pre-implantation genetic diagnosis (PGD) approaches, but it is still technically challenging and the embryo donations are pretty rare. These issues are related to the progress in stem cell biology, which has led to the development of induced pluripotent stem cells (hiPSCs).
Human iPSCs are genetically reprogrammed from human adult somatic cells and harbor pluripotent stem cell-like features similar to hESCs, which makes them a useful source for regenerative medicine such as drug discovery, disease modeling and cell therapy in patient-specific manner1,2 .
Till now, there are several methods to generate human iPSCs, including virus-mediated (retrovirus and adenovirus)3, non-virus mediated (BAC system and vectors transfection)4 gene transductions, and protein delivery system5-7.
Although a delivery of virus-mediated genes can ensure a certain level of efficiency, viral vectors could leave genetic footprint, because they integrate into host chromosomes to express reprogramming genes in an uncontrolled manner. Even when viral integration of transcription factors may activate or inactivate host genes8, it can cause an unexpected genetic aberration and the risk of tumorigenesis5,9. On the other hand, the direct introduction of proteins or RNA into somatic cells were reported, but have some disadvantages such as labor-intensive, repeated transfection, and low level of reprogramming7,10. Even episomal and non-integrating adenovirus, adeno-associated virus, and plasmid vectors are still relatively less efficient11. For these reasons, it is plausible to choose non-integration reprogramming methods with high efficacy of iPSC generation and fewer genetic abnormalities. In this study, we use a Sendai-virus based reprogramming. This method is known to be non-integrated into the host genome and consistently produces human iPSCs without transgene integrations.
Access restricted. Please log in or start a trial to view this content.
1. Preparation of Cell and Media (Day 1)
2. Perform Transduction (Day 2)
3. Replacement of Culture Medium (Day 3 & Day 5)
4. Prepare MEF Dishes for the Co-culture (Day 8)
5. Start Co-culture Transduced Cells with MEF Feeder Cells (Day 9)
6. Feed Human Embryonic Stem Cell Medium and Monitor the Cells (Day 10)
7. Picking the Induced Pluripotent Stem Cell Colonies and Expand the Cells (Day 20~)
8. Characterization of Human iPSCs (after 10 Passages)
Access restricted. Please log in or start a trial to view this content.
Usually infected fibroblasts do not show any morphological changes in several days after Sendai virus transduction, but five days later, they start to have different shapes (Figure 1). As described in a right panel of Figure 1, cells do not have typical fibroblast morphology any more. They have a round shape and bigger nucleus than cytoplasm. Even when transduction is performed in 80% cellular confluency, it looks like they are less confluent in the well after they start to reprogram. If...
Access restricted. Please log in or start a trial to view this content.
Reprogramming human somatic cells to hiPSCs holds unprecedented promises in basic biology, personal medicine, and transplantation12. Previously, human iPSC generations required DNA virus that has integration risk into the host genome, which can create undesirable genetic mutations that limit further clinical applications such as drug development and transplantation therapies13. With this reason, many studies have been reported to generate vector- and transgene-free system human iPSCs by several alte...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
We would like to thank members of the Lee lab for valuable discussions on the manuscript. Work in the Lee lab was supported by grants from Robertson Investigator Award of New York Stem Cell Foundation and from Maryland Stem Cell Research Fund (TEDCO).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
CytoTune-iPS Reprogramming Kit | Invitrogen | A1378002 | |
CF-6,MEFs, neomycin-resistant, mitomycin C treated | Global stem | GSC-6105M | 5 x 105/6 cm or 12.5 x 105/24-well plate |
Trypsin EDTA 0.25% Trypsin with EDTA 4Na 1X | Invitrogen | 25200114 | |
DMEM/F-12 medium | Invitrogen | 11330-032 | |
24-well Cell Culture Plate, flat-bottom with lid | BD | 353935 | |
Y-27632 | TOCRIS | 1254 | 10 μM (Stock: 10 mM) |
basic fibroblast growth factor | LIFE TECHNOLOGIES | PHG0263 | 10 ng (Stock : 100 ug) |
Knock-out serum replacement | Gibco | 10828028 | |
Dulbecco's Modified Eagle Medium (D-MEM, DMEM) (1X), liquid (high glucose) | Invitrogen | 11965118 | |
Fetal bovine serum | Thermo Scientific Fermentas | SH30071.03 | |
L-Glutamine-200 mM (100X), liquid | GIBCO | 25030-081 | 1/100 |
MEM Non-Essential Amino Acids Solution, 100X | LIFE TECHNOLOGIES | 11140050 | 1/100 |
2-Mercaptoethanol (1,000X), liquid | GIBCO | 21985023 | 1/1,000 |
Hausser Phase Contrast Hemacytometers | Hausser Scientific | 02-671-54 | |
EmbryoMax 0.1% Gelatin Solution | Millipore | ES-006-B | |
SSEA-4 | DSHB | MC-813-70 | 1/200 |
anti-Tra-1-81 | Cell Signaling | 4745S | 1/200 |
mouse monoclonal Oct4 antibody | Santa Cruz | SC-5279 | 1/1,000 |
Nanog | R&D | AF1997 | 1/1,000 |
Alexa Flouor 488 goat anti-mouse | Invitrogen | 948492 | 1/2,000 |
DPBS (Dulbecco's Phosphate-Buffered Saline), 1X without calcium & magnesium | Cellgro | 21-031-CV | |
QuantiTect Reverse Transcription Kit | QIAGEN | 205313 | |
PCR Master Mix [2X] | Thermo Scientific Fermentas | K0171 | |
Trizol | Invitrogen | 15596018 | |
picking hood | NuAire | NU-301 | |
dissecting scope | Nikon | SMZ745 |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone