Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
A viable transfer printing-based methodology to introduce plasmonic metal nanostructures in solar cells is described. Using nanopillar poly(dimethylsiloxane) stamps, an Ag-based ordered nanodisk array was integrated with standard hydrogenated microcrystalline Si solar cells, which led to improved device performances due to plasmonic light trapping.
One of the potential applications of metal nanostructures is light trapping in solar cells, where unique optical properties of nanosized metals, commonly known as plasmonic effects, play an important role. Research in this field has, however, been impeded owing to the difficulty of fabricating devices containing the desired functional metal nanostructures. In order to provide a viable strategy to this issue, we herein show a transfer printing-based approach that allows the quick and low-cost integration of designed metal nanostructures with a variety of device architectures, including solar cells. Nanopillar poly(dimethylsiloxane) (PDMS) stamps were fabricated from a commercially available nanohole plastic film as a master mold. On this nanopatterned PDMS stamps, Ag films were deposited, which were then transfer-printed onto block copolymer (binding layer)-coated hydrogenated microcrystalline Si (µc-Si:H) surface to afford ordered Ag nanodisk structures. It was confirmed that the resulting Ag nanodisk-incorporated µc-Si:H solar cells show higher performances compared to a cell without the transfer-printed Ag nanodisks, thanks to plasmonic light trapping effect derived from the Ag nanodisks. Because of the simplicity and versatility, further device application would also be feasible thorough this approach.
There has been a long-standing demand for the application of functional nanostructures in a broad range of technological field. One of the expectations for this trend is to open new design of device architectures leading to improved or innovative performances. In the field of solar cells, for example, the use of metal nanostructures has been actively explored because of their intriguing optical (i.e., plasmonic) properties,1 potentially beneficial to construct effective light trapping systems.2,3 Indeed, some theoretical studies4-6 have suggested that such plasmonic light trapping could achieve effects exceeding the conventional ray optics (texturing)-based light trapping limit.7 As a result, developing strategies to integrate desired metal nanostructures with solar cells has become increasingly important in order to realize these theoretical predictions.
A number of strategies have been proposed to meet this challenge.8-24 These include, for instance, simple (low-cost) thermal annealing of metal films8,9 or dispersion of pre-synthesized metal nanoparticles,10,11 both of which resulted in successful demonstrations of plasmonic light trapping. However, it should be pointed out that the metal nanostructures fabricated by these approaches are usually challenging to match to the theoretical models. In contrast, the traditional nanofabrication techniques in semiconductor industries, such as photolithography and electron beam lithography,12,13 can control structures well below the sub-100 nm level, but they are often too expensive and time-consuming to apply to solar cells, where large-area capability with low cost is essential. In order to fulfill the low-cost, high-throughput, and large-area requirements with nanoscale controllability, methods such as nanoimprint lithography,14-16 soft lithography,17,18 nanosphere lithography,19-21 and hole-mask colloidal lithography22-24 would be promising. Among these choices, we have developed a soft lithographic, advanced transfer printing technique.25 Using a nanostructured poly(dimethylsiloxane) (PDMS) stamps and block copolymer-based adhesive layers, patterning of ordered metal nanostructures could be readily achieved on a number of technologically relevant materials, including the ones for solar cells.
The focus of this article is to describe the detailed procedure of our transfer printing approach to incorporate effective light trapping plasmonic nanostructures in existing solar cell structures. As a demonstrative case, Ag nanodisks and thin-film hydrogenated microcrystalline Si (µc-Si:H) solar cells were selected in this study (Figure 1),26 although other types of metals and solar cells are compatible with this approach. Together with its process simplicity, the approach would be of interest to diverse researchers as a handy tool to integrate functional metal nanostructures with devices.
1. Preparation of PDMS Stamps
2. Preparation of Block Copolymer Solutions
3. Preparation of µc-Si:H Substrates
4. Ag-coating of PDMS Stamps
5. Transfer Printing of Ag Nanodisks on Thin-film Si Surfaces
6. Completion of Thin-film Si Solar Cell Fabrication
7. Measurement of External Quantum Efficiency (EQE)
8. Measurement of Photovoltaic Current-Voltage (J-V) Characteristics
Figure 2 outlines the general process for the transfer printing of Ag nanodisks on the surface of µc-Si:H (n layer). Briefly, an Ag film (thickness: 10-80 nm) is first deposited on the surface of a nanopillar PDMS stamp by electron beam evaporation. In parallel, a PS-b-P2VP solution is spin-coated on the surface of a freshly prepared µc-Si:H n layer. Subsequently, a droplet of EtOH is placed on the PS-b-P2VP-coated surface, and the Ag-deposited PDMS stamp is ...
In this article, a double-layered hard/soft PDMS composite was employed as stamp materials.27 This combination was found to be essential to precisely replicate the parent nanostructure in the mold, which was a hexagonally close-packed round-hole array whose diameter of 230 nm, depth of 500 nm, and hole center-to-center spacing of 460 nm. When only soft PDMS was used, the stamp always resulted in a poorly nanostructured surface (for example, no sharp edge in the inverted pillar structure) due to the low Young&#...
The authors have nothing to disclose.
The authors thank New Energy and Industrial Technology Development Organization (NEDO) under Ministry of Economy, Trade, and Industry (METI), Japan, for the financial support.
Name | Company | Catalog Number | Comments |
Nanohole mold | Scivax | FLH230/500-120 | |
PTFE container | Eishin | n/a | Custom made |
Hard-PDMS materials | |||
Vinylmethylsiloxane-dimethylsiloxane copolymer | Gelest | VDT-731 | |
Pt-divinyltetramethyldisiloxane complex | Gelest | SIP6831.1 | |
Methylhydrosiloxane-dimethylsiloxane copolymer | Gelest | HMS-301 | |
2,4,6,8-tetramethyltetra-vinylcyclotetrasiloxane | Sigma-Aldrich | 396281 | Additive for hard-PDMS |
Soft-PDMS materials | Dow Corning | Sylgard-184 | Silicone precursor |
PS-b-P2VP | Polymer Source | P5742-S2VP | Mn × 103 = 133-b-132 |
Glass/SnO2:F substrates | Asahi Glass Co. Ltd. | Type VU | Chemical mechanical polished by D-process Inc. (http://d-process.jp/index.html) to flatten the surfaces |
Detergent | Fruuchi Chemical Co. http://www.furuchi.co.jp/eng/main.htm | Semico-clean 56 | Used for the cleaning of Glass/SnO2:F substrates |
ZnO:Ga supputtering target | AGC Ceramics Co. Ltd. | 5.7GZO | |
Ag supputtering target | Mitsubishi Materials Co. | 4NAg | |
Double-sided adhesive tape | Nisshin EM Co. | 732 | |
Polyimide tape | Dupont | Kapton 650S#25 | |
Sn-Zn-based Solder | Kuroda Techno Co., Ltd. | Cerasolzer AL-200 | |
Digital micro pipette | Nichiryo | 00-NPX2-20 00-NPX2-200 00-NPX2-1000 | |
Heating chamber | Tokyo Rikakikai Co., Ltd. | VOS-201SD | |
Electron beam evaporator | Canon-Anelva | n/a | Custom made |
Electron beam evaporator | Arios | n/a | Custom made |
Sputtering system | Ulvac | SBR-2306 | |
PECVD system | Shimadzu Emit Co. Ltd. | SLCM-13 | |
Ar plasma system | Diner Electric Gmbh | Femto | |
RIE system | Samco Inc. | RIE-10NR | |
Ultrasonic soldering device | Colby-Eishin Enterprises, Inc. | SUNBONDER | |
EQE measurement system | Bunkoukeiki Co. Ltd. | CEP-25BXS | |
J-V characteristics measurement system | Bunkoukeiki Co. Ltd. | OTENTOSUN-5S-I/V | |
Amorphous Si reference cell | Bunkoukeiki Co. Ltd. | WPVS-NPB-S1 | For light intensity calibration |
Digital multi-meter | Keithley Instruments Inc. | 2400 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone