Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This study is designed to test the hypothesis that neuronavigational system-guided transcranial magnetic stimulation has higher accuracy for targeting the intended target as demonstrated by eliciting a greater degree of virtual aphasia in healthy subjects, measured by delay in reaction time to picture naming.
Repetitive transcranial magnetic stimulation (rTMS) is widely used for several neurological conditions, as it has gained acknowledgement for its potential therapeutic effects. Brain excitability is non-invasively modulated by rTMS, and rTMS to the language areas has proved its potential effects on treatment of aphasia. In our protocol, we aim to artificially induce virtual aphasia in healthy subjects by inhibiting Brodmann area 44 and 45 using neuronavigational TMS (nTMS), and F3 of the International 10-20 EEG system for conventional TMS (cTMS). To measure the degree of aphasia, changes in reaction time to a picture naming task pre- and post-stimulation are measured and compare the delay in reaction time between nTMS and cTMS. Accuracy of the two TMS stimulation methods is compared by averaging the Talairach coordinates of the target and the actual stimulation. Consistency of stimulation is demonstrated by the error range from the target. The purpose of this study is to demonstrate use of nTMS and to describe the benefits and limitations of the nTMS compared to those of cTMS.
Repetitive transcranial magnetic stimulation (rTMS) non-invasively activates neuronal circuits in the central and peripheral nervous systems.1 rTMS modulates brain excitability2 and has potential therapeutic effects in several psychiatric and neurological conditions, such as motor weakness, aphasia, neglect, and pain.3 The target sites for rTMS other than the motor cortex are conventionally identified using the International 10-20 EEG system or by measuring distances from certain external landmarks.
However, inter-individual differences in size, anatomy, and morphology of the brain cortex are not taken into account, making optimal target localization challenging.3 Another critical issue for rTMS applications is the discordance between placement of the magnetic coil and the cortical region of intended stimulation.
Optically tracked navigational neurosurgery has expanded it applications to encompass the cognitive neuroscience field including rTMS for guidance of the magnetic coil. The neuronavigational system assists in identifying the optimal target structures for rTMS.4,5 Such divergence in coil positioning on the target area frequently occurs with the conventional method adopting the 10-20 EEG system, and this is expected to be overcome by neuronavigation.
This study protocol demonstrates a method to induce virtual aphasia in healthy subjects by neuronavigational rTMS targeting Broca's area, using individual anatomical mapping. The degree of virtual aphasia in terms of change in reaction time to picture naming is measured and compared with those from the conventional stimulation method. The neuronavigation-guided method has higher accuracy for delivering magnetic pulses to the brain, and is thus expected to demonstrate greater clinical change than that of the conventional method. The goal of this study was to introduce a more precise and effective method of stimulation for patients with aphasia in clinical setting.
Ethics statement: This study was approved by the institutional review board of a blinded hospital.
1. Preparing Materials (Table 1)
2. Checking the Study Design
3. Preparation of the TMS Protocol
4. Picture Naming Task
5. TMS Mapping Protocol
6. Topograhic Data Acquisition
Kim et al. demonstrated a more superior effect of TMS with neuronavigational system guidance compared to the non-navigated conventional method by less dispersion of stimulus and more focal stimulation to the right M1 area,8 as shown in Figure 9. Further evidence to support incorporating the neuronavigational system with TMS is demonstrated by a randomized crossover experiment to induce virtual aphasia in healthy subjects by targeting Brodmann area...
TMS is widely used both in clinical practice and basic research.10 Valuable therapeutic effects are offered by the physiologic influence of rTMS, including an inhibitory neuromodulatory effect on cortical excitability with low frequency rTMS for treatment of aphasia.11 Transient disruption of neural processing or virtual lesioning induced by rTMS can change behavioral performance.12 However, the desired effect of rTMS may be diluted or even not occur with the coil misplaced on the target....
All authors declare no conflict of interest.
This study was supported by a grant (A101901) from the Korea Healthcare Technology R&D Project, Ministry of Health & Welfare, Republic of Korea. We thank Dr Ji-Young Lee for providing technical assistance throughout the procedure.
Name | Company | Catalog Number | Comments |
Medtronic MagPro X100 | MagVenture | 9016E0711 | |
MCF-B65 Butterfly coil | MagVenture | 9016E042 | |
Brainsight TMS Navigation | Rogue Research | KITBSF1003 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone