Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The electrophysiological technique of intracellular recording is demonstrated and used to determine spectral sensitivities of single photoreceptor cells in the compound eye of a butterfly.
Intracellular recording is a powerful technique used to determine how a single cell may respond to a given stimulus. In vision research, intracellular recording has historically been a common technique used to study sensitivities of individual photoreceptor cells to different light stimuli that is still being used today. However, there remains a dearth of detailed methodology in the literature for researchers wishing to replicate intracellular recording experiments in the eye. Here we present the insect as a model for examining eye physiology more generally. Insect photoreceptor cells are located near the surface of the eye and are therefore easy to reach, and many of the mechanisms involved in vision are conserved across animal phyla. We describe the basic procedure for in vivo intracellular recording of photoreceptor cells in the eye of a butterfly, with the goal of making this technique more accessible to researchers with little prior experience in electrophysiology. We introduce the basic equipment needed, how to prepare a live butterfly for recording, how to insert a glass microelectrode into a single cell, and finally the recording procedure itself. We also explain the basic analysis of raw response data for determining spectral sensitivity of individual cell types. Although our protocol focuses on determining spectral sensitivity, other stimuli (e.g., polarized light) and variations of the method are applicable to this setup.
The electrical properties of cells such as neurons are observed by measuring ion flow across cell membranes as a change in voltage or current. A variety of electrophysiological techniques have been developed to measure bioelectric events in cells. Neurons found in the eyes of animals are accessible and their circuitry is often less complex than in the brain, making these cells good candidates for electrophysiological study. Common applications of electrophysiology in the eye include electroretinography (ERG)1,2 and microelectrode intracellular recording. ERG involves placing an electrode in or on the eye of an animal, applying a light stimulus, and measuring the change in voltage as a sum of the responses of all nearby cells3-6. If one is specifically interested in characterizing spectral sensitivities of individual photoreceptor cells, often multiple cell types simultaneously respond at different strengths to a given stimulus; thus it can be difficult to determine the sensitivities of specific cell types from ERG data especially if there are several different kinds of spectrally-similar photoreceptor cells in the eye. One potential solution is to create transgenic Drosophila with the photoreceptor (opsin) gene of interest expressed in the majority R1-6 cells in the eye and then perform ERGs7. Potential drawbacks of this method include no to low-expression of the photoreceptor protein8, and the long time frame for the generation and screening of transgenic animals. For eyes with fewer kinds of spectrally distinct photoreceptors, adaptation of the eye with colored filters can help with lowering the contribution of some cell types to the ERG, thereby permitting estimation of spectral sensitivity maxima9.
Intracellular recording is another technique where a fine electrode impales a cell and a stimulus is applied. The electrode records only that individual cell's response so that recording from and analyzing multiple individual cells can yield specific sensitivities of physiologically different cell types10-14. Although our protocol focuses on analysis of spectral sensitivity, the basic principles of intracellular recording with sharp electrodes are modifiable for other applications. Using a different preparation of a specimen, for instance, and using sharp quartz electrodes, one may record from deeper in the optic lobe or other regions in the brain, depending on the question being asked. For example, response times of individual photoreceptor cells15, cell activity in the optic lobes16 (lamina, medulla or lobula17), brain18 or other ganglia19 can also be recorded with similar techniques, or color stimuli could be replaced with polarization20-22 or motion stimuli23,24.
Phototransduction, the process by which light energy is absorbed and converted into an electrochemical signal, is an ancient trait common to nearly all present day animal phyla25. The visual pigment found in photoreceptor cells and responsible for initiating visual phototransduction is rhodopsin. Rhodopsins in all animals are made up of an opsin protein, a member of the 7 transmembrane G protein-coupled receptor family, and an associated chromophore which is derived from retinal or a similar molecule26,27. Opsin amino acid sequence and chromophore structure affect the absorbance of rhodopsin to different wavelengths of light. When a photon is absorbed by the chromophore the rhodopsin becomes activated, initiating a G-protein cascade in the cell that ultimately leads to the opening of membrane-bound ion channels28. Unlike most neurons, photoreceptor cells undergo graded potential changes that can be measured as a relative change in response amplitude with changing light stimulus. Typically a given photoreceptor type expresses only one opsin gene (though exceptions exist8,10,29-31). Sophisticated color vision, of the kind found in many vertebrates and arthropods, is achieved with a complex eye of hundreds or thousands of photoreceptor cells each expressing one or occasionally more rhodopsin types. Visual information is captured by comparing responses over the photoreceptor mosaic via complex downstream neural signaling in the eye and brain, resulting in the perception of an image complete with color and motion.
After measuring the raw responses of a photoreceptor cell to different wavelengths of light via intracellular recording, it is possible to calculate its spectral sensitivity. This calculation is based on the Principle of Univariance, which states that a photoreceptor cell's response is dependent on the number of photons it absorbs, but not on the particular properties of the photons it absorbs32. Any photon that is absorbed by rhodopsin will induce the same kind of response. In practice, this means that a cell's raw response amplitude will increase due to either an increase in light intensity (more photons to absorb), or to a shift in wavelength toward its peak sensitivity (higher probability of rhodopsin absorbing that wavelength). We make use of this principle in relating cellular responses at known intensity and the same wavelength to responses at different wavelengths and the same intensity but unknown relative sensitivity. Cell types are often identified by the wavelength at which their sensitivity peaks.
Here we show one method for intracellular recording and analysis of spectral sensitivity of photoreceptors in the eye of a butterfly, with a focus on making this method more accessible to the wider research community. Although intracellular recording remains common in the literature, particularly with respect to color vision in insects, we have found that descriptions of materials and methods are usually too brief to allow for reproduction of the technique. We present this method in video format with the aim of permitting its easier replication. We also describe the technique using easily obtainable and affordable equipment. We address common caveats that often are not reported, which slow down research when optimizing a new and complex technique.
All animals were treated as humanely as possible. Insects were shipped as pupae from Costa Rica Entomological Supply, Costa Rica.
1. Heliconius Pupae Care
2. Optical Track, Calibration, and Measurement of Experimental Light Conditions
3. Recording Equipment Setup
4. Prep on the Day of Recording
5. Specimen Prep and Recording Procedure
6. Spectral Sensitivity Analysis
For many elements of the recording setup, a written description does not provide enough detail. Figure 1 is a schematic of the components involved in the complete recording setup. In Figure 2, spectra are plotted for white light and each interference filter to give a sense of why a correction factor is needed and what is needed to calculate this correction. Figure 3 shows photos and a diagram of the Cardan arm that is used for these experiments. Figure 4...
Intracellular recording can be a difficult technique to master due to the many technical steps involved. For successful experiments several important points must be considered. First, it is important to have a properly vibrationally-isolated table on which the experiment is performed. Many researchers use air tables, which completely separate the tabletop from the base, giving superior vibration isolation. Our setup involves a thick marble table with a sandbox on top, into which is placed the micromanipulator/electrode h...
The authors declare that they have no competing financial interests.
We thank the late Rudy Limburg for fabricating the cardan arm perimeter, Kimberly Jamison, Matthew McHenry, and Raju Metherate for lending us equipment, and Almut Kelber and Kentaro Arikawa, for encouragement. This work was supported by a National Science Foundation (NSF) Graduate Research Fellowship to KJM and NSF grant IOS-1257627 to A.D.B.
Name | Company | Catalog Number | Comments |
Butterfly pupae | Several local species available, need USDA permits for shipping. Carolina Bio Supply has several insect species that may be ordered within the U.S. without the need for additional permits | ||
Large plastic cylinder | Any chamber that remains humidified will work | ||
Insect pins, size 2 | BioQuip | 1208B2 | |
100% Desert Mesquite Honey | Trader Joe's | Any honey or sucrose solution will work | |
Xenon Arc Lamp | Oriel Instruments | 66003 | Oriel is now a part of Newport Corporation |
Universal Power Supply | Oriel Instruments | 68805 | Oriel is now a part of Newport Corporation |
Optical Track | Oriel Instruments | 11190 | Oriel is now a part of Newport Corporation |
Rail Carrier, Large (2x) | Oriel Instruments | 11641 | Oriel is now a part of Newport Corporation |
Rail Carrier, Small (4x) | Oriel Instruments | 11647 | Oriel is now a part of Newport Corporation |
Thread Adaptor, 8-32 Male to 1/4-20 Male, pack of 10 | Newport Corporation | TA-8Q20-10 | |
Optical Mounting Post, 1.0 in., 0.5 in. Dia. Stainless, 8-32 & 1/4-20 (5x) | Newport Corporation | SP-1 | |
No Slip Optical Post Holder, 2 in., 0.5 in. Diameter Posts, 1/4-20 (5x) | Newport Corporation | VPH-2 | |
Fixed lens mount, 50.8 mm | Newport Corporation | LH-2 | |
Fixed lens mount, 25.4 mm | Newport Corporation | LH-1 | |
Condenser lens assembly | Newport Corporation | 60006 | |
Convex silica lens, 50.8 mm | Newport Corporation | SPX055 | |
Six Position Filter Wheel, x2 | Newport Corporation | FW1X6 | |
Filter Wheel Mount Hub | Newport Corporation | FWM | |
Concave silica lens, 25.4 mm | Newport Corporation | SPC034 | |
Collimator holder | Newport Corporation | 77612 | |
Collimating beam probe | Newport Corporation | 77644 | |
Ferrule Converter, SMA Termination to 11 mm Standard Ferrule | Newport Corporation | 77670 | This adapter allows the fiber optic to fit into the collimator holder |
600 μm diameter UV-vis fiber obtic cable | Oriel Instruments | 78367 | Oriel is now a part of Newport Corporation |
Shutter with drive unit | Uniblitz | 100-2B | |
UV Fused Silica Metallic ND Filter, 0.1 OD | Newport | FRQ-ND01 | |
UV Fused Silica Metallic ND Filter, 0.3 OD | Newport | FRQ-ND03 | |
UV Fused Silica Metallic ND Filter, 0.5 OD | Newport | FRQ-ND05 | |
UV Fused Silica Metallic ND Filter, 1.0 OD | Newport | FRQ-ND10 | |
UV Fused Silica Metallic ND Filter, 2.0 OD | Newport | FRQ-ND30 | |
UV Fused Silica Metallic ND Filter, 3.0 OD | Newport | FRQ-ND50 | |
LS-1-Cal lamp | Ocean Optics | LS-1-Cal | |
Spectrometer | Ocean Optics | USB-2000 | |
SpectraSuite Software | Ocean Optics | ||
Interference bandpass filter, 300 nm | Edmund Optics | 67749 | |
Interference bandpass filter, 310 nm | Edmund Optics | 67752 | |
Interference bandpass filter, 320 nm | Edmund Optics | 67754 | |
Interference bandpass filter, 330 nm | Edmund Optics | 67756 | |
Interference bandpass filter, 340 nm | Edmund Optics | 65614 | |
Interference bandpass filter, 350 nm | Edmund Optics | 67757 | |
Interference bandpass filter, 360 nm | Edmund Optics | 67760 | |
Interference bandpass filter, 370 nm | Edmund Optics | 67761 | |
Interference bandpass filter, 380 nm | Edmund Optics | 67762 | |
Interference bandpass filter, 390 nm | Edmund Optics | 67763 | |
Interference bandpass filter, 400 nm | Edmund Optics | 65732 | |
Interference bandpass filter, 410 nm | Edmund Optics | 65619 | |
Interference bandpass filter, 420 nm | Edmund Optics | 65621 | |
Interference bandpass filter, 430 nm | Edmund Optics | 65622 | |
Interference bandpass filter, 440 nm | Edmund Optics | 67764 | |
Interference bandpass filter, 450 nm | Edmund Optics | 65625 | |
Interference bandpass filter, 460 nm | Edmund Optics | 67765 | |
Interference bandpass filter, 470 nm | Edmund Optics | 65629 | |
Interference bandpass filter, 480 nm | Edmund Optics | 65630 | |
Interference bandpass filter, 492 nm | Edmund Optics | 65633 | |
Interference bandpass filter, 500 nm | Edmund Optics | 65634 | |
Interference bandpass filter, 510 nm | Edmund Optics | 65637 | |
Interference bandpass filter, 520 nm | Edmund Optics | 65639 | |
Interference bandpass filter, 532 nm | Edmund Optics | 65640 | |
Interference bandpass filter, 540 nm | Edmund Optics | 65642 | |
Interference bandpass filter, 550 nm | Edmund Optics | 65644 | |
Interference bandpass filter, 560 nm | Edmund Optics | 67766 | |
Interference bandpass filter, 570 nm | Edmund Optics | 67767 | |
Interference bandpass filter, 580 nm | Edmund Optics | 65646 | |
Interference bandpass filter, 589 nm | Edmund Optics | 65647 | |
Interference bandpass filter, 600 nm | Edmund Optics | 65648 | |
Interference bandpass filter, 610 nm | Edmund Optics | 65649 | |
Interference bandpass filter, 620 nm | Edmund Optics | 65650 | |
Interference bandpass filter, 632 nm | Edmund Optics | 65651 | |
Interference bandpass filter, 640 nm | Edmund Optics | 65653 | |
Interference bandpass filter, 650 nm | Edmund Optics | 65655 | |
Interference bandpass filter, 660 nm | Edmund Optics | 67769 | |
Interference bandpass filter, 671 nm | Edmund Optics | 65657 | |
Interference bandpass filter, 680 nm | Edmund Optics | 67770 | |
Interference bandpass filter, 690 nm | Edmund Optics | 65659 | |
Interference bandpass filter, 700 nm | Edmund Optics | 67771 | |
Faraday cage | Any metal structure will work that can be grounded and that fits the experimental setup. | ||
Stereomicroscope, 6X, 12X, 25X, 50X magnification | Wild Heerbrugg | Wild M5 | Any Stereomicroscope will do |
Microscope stand with swinging arm and heavy base | McBain Instruments | Any heavy base with arm will do | |
Cardan arm | Custom built, See Figure 4 | ||
Fiber-lite high intensity illuminator | Dolan-Jenner | MI-150 | For lighting specimen |
Fiber-lite goose-neck light guide | Dolan-Jenner | EEG 2823 | Any goose-neck light guide will do |
Marble table | |||
Raised wooden table | Hole should be cut through this table so that the sandbox can rest on the marble table underneath | ||
Wooden box filled with sand | custom built, any box with sand | ||
Manipulator | Carl Zeiss - Jena | ||
Electrode holder | |||
Specimen stage | |||
Alligator clip wires for grounding | |||
Insulated copper wire | |||
Silver wire, 0.125 mm diameter | World Precision Instruments | AGW0510 | |
BNC cables | |||
Preamplifier with headstage | Dagan Corporation | IX2-700 | |
Humbug Noise reducer | Quest Scientific | Humbug | |
Oscilloscope, 30 MHz, 2 CH, Dual Trace, Alt-triggering, without probe | EZ Digital | os-5030 | |
BNC T-adapter | |||
Powerlab hardware 2/20 | ADI instruments | ML820 | |
Labchart software | ADI instruments | Chart 5 | |
10 MHz Pulse Generator | BK Precision | 4030 | |
Glass pipette puller | Sutter Instruments | P-87 | |
Borosillicate glass capillaries with filament | World Precision Instruments | 1B120F-4 | |
Potassium chloride, 3 M | |||
Slotted plastic tube | |||
Low melting temperature wax | |||
Soldering Iron | Weller | ||
Platform with ball-and-socket magnetic base | Hama photo and video | ||
Double edge carbon steel, breakable razor blade | Electron Microscopy Sciences | 72004 | |
Vaseline | |||
Microsoft Excel | Microsoft |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone