Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, a protocol to harvest, maintain, and treat mouse small intestinal organoids with pathogen associated molecular patterns (PAMPs) and Listeria monocytogenes is described, as well as emphasis on gene expression and proper normalization techniques for protein.
Primary intestinal organoids are a valuable model system that has the potential to significantly impact the field of mucosal immunology. However, the complexities of the organoid growth characteristics carry significant caveats for the investigator. Specifically, the growth patterns of each individual organoid are highly variable and create a heterogeneous population of epithelial cells in culture. With such caveats, common tissue culture practices cannot be simply applied to the organoid system due to the complexity of the cellular structure. Counting and plating based solely on cell number, which is common for individually separated cells, such as cell lines, is not a reliable method for organoids unless some normalization technique is applied. Normalizing to total protein content is made complex due to the resident protein matrix. These characteristics in terms of cell number, shape and cell type should be taken into consideration when evaluating secreted contents from the organoid mass. This protocol has been generated to outline a simple procedure to culture and treat small intestinal organoids with microbial pathogens and pathogen associated molecular patterns (PAMPs). It also emphasizes the normalization techniques that should be applied when protein analysis are conducted after such a challenge.
The ability to harvest and culture primary organoids have been described for small intestine, colon, pancreas, liver and brain and are exciting advances germane to understanding a more physiologically representative phenomena for tissue biology1-5. The first methods describing the culture and maintenance of small intestinal organoids was reported by Sato et al. out of the lab of Hans Clevers1. Prior to this method, harvesting and culture of primary intestinal epithelial cells proved to be limited and ineffective in sustaining epithelial cell growth. Methods included dissociation of tissue via incubation with enzymes, such as collagenase and dispase, which would ultimately lead to the outgrowth of intermixed primary fibroblast cells6. These conditions would also be time restricted in sustaining the epithelial cell culture. Minimal to no epithelial cell niche would form, as the epithelial cells would enter apoptosis due to the lack of appropriate growth factors or loss of contact integrity, termed anokis7. The advent of the 3D-organoid culture system has provided a method to culture primary intestinal cells containing a spectrum of intestinal cell types in sustained culture1. These epithelial organoids have advantages over cell lines being that they are composed of several differentiated cells, and better mimic the organ they are derived from in vivo8. The process to ultimately "grow a mini gut in a dish" has proven to be a valuable tool for assessing the response of intestinal epithelium under different stimuli. Investigating the interaction of primary intestinal cells with microbial pathogen associated molecular patterns (PAMPs) is relevant to the field of immunology as these molecular patterns can regulate diverse responses from both host and microbe9. Not only can investigators now explore these interactions with mouse organoids, but they can be cultured from humans as well2. This technology has the potential to dramatically alter personalized medicine and it is tempting to speculate about advances that this technique will make possible in the near future.
The overall goal of this method is to provide a protocol for the culture, expansion, and treatment of intestinal organoids with a variety of stimuli. Such stimuli can ultimately range from vaccines, bacterial PAMPs, live pathogens, gastrointestinal (GI) and cancer therapeutics. The isolation and culture of mouse intestinal organoids has been adapted from Sato et al. Though there are slight deviations from the original method, the end product being organoid culture is still achieved when following this protocol. This method is focused on describing an adequate technique for proper normalization when working with non-homogenous cell structures, which must be taken into consideration when conducting an assay based on cell number.
All research was approved and conducted under Virginia Tech IACUC guidelines
1. Prepare R-Spondin1 Conditioned Media From HEK293T-Rspo1 Cell Line
2. Preparation of Organoid Growth Media and Reagents for Harvesting Small Intestinal Crypts
3. Harvesting Mus musculus Small Intestinal Crypts for Organoid Culture1
4. Passaging Organoids Every 7th Day
5. Plating Organoids on Day 14 for Pattern Recognition Receptor Stimulation with PAMPs and Listeria monocytogenes for Gene Expression Analysis
6. Plating Organoids on Day 14 for PAMP and L. monocytogenes Challenge for Protein Analysis in Supernatant
When following this protocol to cultivate intestinal organoids, characteristic sphere shaped organoids will be present after harvesting. The addition of R-spondin1 conditioned media daily will initiate the growth and budding of the organoids. The growth of organoids is shown in Figure 1A-F, and is representative of intestinal organoids on days 1, 2, 4, 5, 6 and day 14. Figure 1F represents the non-homogeneous growth chara...
The culture and maintenance of intestinal organoids is a procedure that can be mastered by any individual with adequate tissue culture technique. There are subtleties in passaging when compared to growing cells in a more conventional monolayer, but these subtleties are not difficult to overcome. The critical steps of this method involve being able to grow the organoids to a high enough density for optimal seeding. Experiments must be scaled down with organoids as large seeding densities that can commonly be achieved with...
The authors declare that they have no competing financial interests.
The authors would like to thank Dr. Sheryl Coutermarsh-Ott, Dylan McDaniel and Bettina Heid for technical discussions. The authors thank Dr. Nanda Nanthakumar for providing the Caco-2 cells. The authors also thank The Multicultural Academic Opportunities Program (MAOP) at Virginia Tech. This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases Award K01DK092355 (to I.C.A.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Name | Company | Catalog Number | Comments |
Fetal Bovine Serum (FBS) | Atlanta Biologicals | S11050 | (Section 1,3,6) Or equivalent brand |
Sorvall Legend XTR Centrifuge | Thermo | (Section 1,3) | |
DMEM | GE Healthcare | Sh30243.01 | (Section 1,6) For Caco-2 and HEK293 Rspondin1 cells |
HEK293T-Rspondin1 secreting cell line | (Section 1) Described and modified from Kim, K.A. et al. Lentiviral particles contained RSPO1(NM_138683) ORF cDNA cloned into a pReceiver-Lv105 backbone custom ordered and purchased from GeneCopoeia. | ||
50 ml conical tube | Falcon | 352070 | (Section 1) Or equivalent brand |
T-175 Flask | Corning | 431079 | (Section 1) Or equivalent brand |
Protein Matrix | Corning | 356231 | (Section 2,3,4,5,6) Matrigel Growth Factor Reduced |
HyClone Dulbecco's (DPBS) | GE Healthcare | SH30264.01 | (Section 2,3) |
DMEM/F12 | Life Technologies | 12634-010 | (Section 2,3) Advanced DMEM/F12 |
Corning 24 Well TC Plates | Corning | 3524 | (Section 2) |
N2 Supplement 100x | Life Technologies | 17502-048 | (Section 2) |
B27 without vitamin A 50x | Life Technologies | 12587-010 | (Section 2) |
Trizol | Life Technologies | 15596-026 | (Section 2) |
Glutamine Supplement (Glutamax) | Life Technologies | 35050-061 | (Section 2) Can Combine with Advanced DMEM/ F12 |
HEPES (1 M) | Life Technologies | 15630-080 | (Section 2) Can Combine with Advanced DMEM/ F12 |
10ml Serological Pipet | Falcon | 357551 | (Section 2) Or equivalent brand |
Murine Noggin | Peprotech | 250-38 | (Section 2) Stock = 100 mg/ml |
N-Acetyl-L-cysteine | Sigma-Aldrich | A9165 | (Section 2) Stock = 1M |
Recombinant Mouse EGF | Biolegend | 585608 | (Section 2) Stock = 500 mg/ml |
Rocker Variable | Bioexpres | (Section 3) | |
dissecting scissors | (Section 3) | ||
forceps | (Section 3) | ||
glass slides | (Section 3) | ||
dissecting tweezers | (Section 3) | ||
25 ml Serological Pipet | Falcon | (Section 3) | |
EDTA | Sigma-Aldrich | SLBB9821 | (Section 3) 0.5M or alternative TC grade EDTA |
Sterile Petri Dish 100mm x 15mm | Fisher | FB0875712 | (Section 3) Or equal sized TC dish |
1ml Syringe | Becton Dickinson | 309659 | (Section 4) |
Precision Glide Needle | Becton Dickinson | 305120 | (Section 4) 23G x 1 1/4 (0.6mm x 30mm) |
Flagellin from Bacillus subtilis | Invivogen | tlrl-bsfla | (Section 5,6) |
Listeria monocytogenes | ATCC | 19115 | (Section 5,6) (Murray et al.) |
Hemocytometer | Sigma-Aldrich | Z359629-1EA | (Section 5,6)Or equivalent brand |
BBL Brain Heart Infusion Agar | Becton Dickinson | 211065 | (Section 5) |
Bacto Brain Heart Infusion | Becton Dickinson | 237500 | (Section 5) |
Caco-2 | ATCC | HTB-37 | (Section 6) |
Trypsin | gibco | 25200056 | (section 6) |
Methanol | Fisher | A412-4 | (Section 6) |
SpectraMax M5 | Molecuar Devices | (Section 6) | |
96 Well Assay Plate | Corning | 3603 | (Section 6) Black Plate, Clear Bottom TC treated |
Nuclear Staining Dye | Life Technologies | H1399 | (section 6) Hoechst 33342 |
T-75 Flask | Corning | 430641 | (Section 6) Or equivalent brand |
15 ml conical tube | Falcon | 352096 | (Section1,3) Or equivalent brand |
1.7 ml polypropylene tube | Bioexpress | C-3262-1 | Or equivalent brand |
Quick-RNA MiniPrep | Zymo Research | R1054 | Or equivalent brand |
TNF-alpha | Applied Biosystems | Mm 00443260_g1 | Taqman gene expression assay kit |
IL-6 | Applied Biosystems | (Mm 00446190_m1 | Taqman gene expression assay kit |
IL-1beta | Applied Biosystems | Mm 00434228_m1 | Taqman gene expression assay kit |
IL-18 | Applied Biosystems | Mm 00434225_m1 | Taqman gene expression assay kit |
18s | Applied Biosystems | Hs 99999901_s1 | Taqman gene expression assay kit |
7500 Fast Real Time PCR System | Applied Biosystems | ||
Nexus gradient Mastercycler | Eppendorf | ||
TaqMan Fast Universal PCR Master Mix | Life Technologies | 4352042 | |
High Capacity cDNA Reverse Transcription Kit | Life Technologies/Applied Biosystems | 4368814 | |
Fast Optical 96-Well Reaction Plate, 0.1 mL | Life Technologies/Applied Biosystems | 4346907 | |
Recombinant Mouse R-Spondin 1 Protein | R&D Systems | 3474-RS-050 | 500 ng/ml |
chloroform | Sigma-Aldrich | C7559 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone