Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
This work describes a fluorescence microscopy-based method for the study of platelet adhesion, spreading, and secretion under flow. This versatile platform enables the investigation of platelet function for mechanistic research on thrombosis and hemostasis.
Blood platelets are essential players in hemostasis, the formation of thrombi to seal vascular breaches. They are also involved in thrombosis, the formation of thrombi that occlude the vasculature and injure organs, with life-threatening consequences. This motivates scientific research on platelet function and the development of methods to track cell-biological processes as they occur under flow conditions.
A variety of flow models are available for the study of platelet adhesion and aggregation, two key phenomena in platelet biology. This work describes a method to study real-time platelet degranulation under flow during activation. The method makes use of a flow chamber coupled to a syringe-pump setup that is placed under a wide-field, inverted, LED-based fluorescence microscope. The setup described here allows for the simultaneous excitation of multiple fluorophores that are delivered by fluorescently labeled antibodies or fluorescent dyes. After live-cell imaging experiments, the cover glasses can be further processed and analyzed using static microscopy (i.e., confocal microscopy or scanning electron microscopy).
Platelets are anucleate cells that circulate in the blood stream. Their main function is to seal vascular breaches at sites of injury and to prevent blood loss. At these sites of injury, subendothelial collagen fibers become exposed and are subsequently covered by the multimeric protein, von Willebrand factor (VWF). VWF interacts with the platelets in circulation in a mechanism that depends upon the glycoprotein Ibα-IX-V complex on the cell surface1, slowing down the speed of the platelets. This is particularly important at high shear rates. The platelets subsequently undergo morphological changes while receiving activating impulses from collagen. This leads to irreversible spreading and eventually to platelet aggregation. Both processes depend upon the secretion of granule contents to facilitate platelet-platelet crosstalk. Amongst others, platelet α-granules contain fibrinogen and VWF to assist platelet adhesion and to bridge platelets together in an integrin-dependent manner. The platelet-dense granules contain inorganic compounds2, including calcium and adenosine diphosphate (ADP), which help to reinforce platelet activation. Furthermore, platelets contain mediators of (allergic) inflammation3, complement-controlling proteins4, and angiogenesis factors5,6, raising the questions of whether and how these contents are differentially released under varying conditions.
Since the 1980s, the study of platelet function in flow models has been valuable to the investigation of thrombotic mechanisms7. Since then, much technical progress has been made, and flow models that include fibrin formation are currently developed to assay the hemostatic potential of therapeutic platelet concentrates ex vivo8 or to investigate the influence of disturbances in shear rates on thrombus morphology9. The differences in the molecular and cell-biological mechanisms that drive stable adhesion and physiological thrombus formation (hemostasis) versus pathological thrombus formation (thrombosis) may be very subtle and motivate the development of flow models that allow for the real-time visualization of these subcellular processes.
An example of a process for which such a setup would be valuable is the (re)distribution of intracellular polyphosphate and the recruitment of clotting factors to uncover the time-dependent impact that this has on fibrin ultrastructure10. Studies are often limited to end-point analyses. The main aim of the described method is to enable the real-time visual investigation of dynamic subcellular processes that take place during platelet activation under flow.
The local Medical Ethical Committee of the University Medical Center Utrecht approved the drawing of blood for ex vivo research purposes, including those of this study.
1. Solution Preparation
2. Cover Glass Preparation
3. Preparation of Platelet-rich Plasma (PRP)
4. Preparation of Washed Platelets
5. Flow Chamber Assembly
NOTE: These experiments make use of an in-house developed flow chamber12. A variety of commercially produced flow chambers can be used, as long as they can hold a cover glass, which preferentially is removable for further analyses. The flow chamber used for the described experiments is made from poly(methyl methacrylate) to precisely fit a microscope insert stage. It contains an inlet and outlet (Figure 1A-C; 1, 2), as well as a vacuum connection (Figure 1A and C; 3). A customized silicone sheet (Figure 1A and D; 4) is placed on top. Two cut-outs form vacuum channels (Figure 1A and D; 5) to attach the cover glass (Figure 1A; 6) tightly to the chamber. A central cut-out forms the flow channel (Figure 1A and D; 7; 2.0 mm width and 0.125 mm height). The inlet and outlet are connected to the flow channel, and the vacuum is connected to the vacuum channel.
6. Pre-staining of the Platelets and Preparation of the Antibodies
7. Perfusion
8. Sample Preparation for Confocal Fluorescence Microscopy
Figure 1 shows images of the flow chamber and experimental setup; the position and dimensions of the silicon sheet; and tubing connections. Figure 2 provides details on the dimensions of the flow chamber. Figure 3 and Movie 1 show a time-series of images of platelet adhesion and spreading on immobilized VWF. CD63 is a transmembrane protein that is inserted into the membrane of intrac...
Worldwide, thrombosis is a leading cause of death and morbidity, and platelets play a central role in its development. This work describes a method for the live-cell imaging of platelet degranulation under flow. It is generally assumed that, when platelets become activated, all granular contents are directly released into solution. The accompanying results suggest that this is not necessarily the case. During adhesion and degranulation, platelets retain a significant amount of polyphosphate (Figure 4). A...
The authors have nothing to disclose.
CM acknowledges financial support from the International Patient Organization for C1-Inhibitor Deficiencies (HAEi), Stichting Vrienden van Het UMC Utrecht, and the Landsteiner Foundation for Blood Transfusion Research (LSBR).
Name | Company | Catalog Number | Comments |
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) | VWR | 441476L | |
Na2HPO4 | Sigma | S-0876 | |
NaCl | Sigma | 31434 | |
KCl | Sigma | 31248 | |
MgSO4 | Merck KGaA | 1.05886 | |
D-glucose | Merck KGaA | 1.04074 | |
Prostacyclin | Cayman Chemical | 18220 | |
Tri-sodium citrate | Merck KGaA | 1.06448 | |
Citric acid | Merck KGaA | 1.00244 | |
Cover glasses | Menzel-Gläser | BBAD02400500#A | 24 x 50 mm, No. 1 = 0.13 - 0.16 mm thickness. |
Chromosulfuric acid (2% CrO3) | Riedel de Haen | 07404 | CAS [65272-70-0]. |
Von Willebrand factor (VWF) | in-house purified | ||
Fibrinogen | Enzyme Research Laboratories | FIB3L | |
4 well dish, non-treated | Thermo Scientific | 267061 | |
Human Serum Albumin Fraction V | Haem Technologies Inc. | 823022 | |
Blood collection tubes, 9 mL, 9NC Coagulation Sodium Citrate 3.2% | Greiner Bio-One | 455322 | |
Cell analyser | Abbott Diagnostics | CELL-DYN hematology analyzer | |
Paraformaldehyde | Sigma | 30525-89-4 | |
Syringe pump | Harvard Apparatus, Holliston, MA | Harvard apparatus 22 | |
10 mL syringe with 14.5 mm diameter | BD biosciences | 305959 | Luer-Lok syringe |
Anti-CD63-biotin | Abcam | AB134331 | |
Anti-CD62P-biotin | R&D Systems | Dy137 | |
4’,6-Diamidino-2-phenylindole dihydrochloride (DAPI) | Polysciences Inc. | 9224 | |
Streptavidin, Alexa Fluor 488 conjugate | Thermo Scientific | S11223 | |
Immersion oil | Zeiss | 444963-0000-000 | |
Detergent solution | Unilever, Biotex | ||
Glycine | Sigma | 56-40-6 | |
Polyvinyl alcohol | Sigma | 9002-89-5 | Mowiol 40-88. |
Tris hydrochloride | Sigma | 1185-53-1 | |
1,4-Diazabicyclo[2.2.2]octane (DABCO) | Sigma | 280-57-9 | |
Sheep Anti-hVWF pAb | Abcam | AB9378 | |
Alexa fluor 488-NHS | Thermo Scientific | A20000 | |
Glycerol | Sigma-Aldrich | 15523-1L-R | |
Parafinn film | Bemis | PM-996 | 4 in. x 125 ft. Roll. |
Silicone sheet non-reinforced | Nagor | NA 500-1 | 200 mm x 150 mm x 0.125 mm. |
Customized cut silicone sheet with perfusion and vacuum channels | in-house made | Made of Silicone sheet non-reinforced (Nagor, NA 500-1) | |
1.5 mL tubes | Eppendorf AG | T9661-1000AE | |
Fluorescent microscope | Zeiss Observer Z1 | Equiped with LED excitation lights. | |
Microscope software | Zeiss ZEN 2 | blue edition | |
18 G needle (18 G x 1 1/2") | BD biosciences | 305196 | |
NaCl | Riedel de Haen | 31248375 | |
Tris | Roche | 10708976 | |
Plastic pasteur pipet | VWR | 612-1681 | 7 mL non sterile, graduated up to 3 mL. |
Silicone tubing | VWR | 228-0656 | Inner diameter. x Outer diameter x Wall thickness = 1.02 x 2.16 x 0.57 mm. |
Microscope slides | Thermo Scientific | ABAA000001##12E | 76 x 26 x 1 mm, ground edges 45 °, frosted end. |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone