Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This study investigated lower-limb kinematics and ground reaction force (GRF) during moderate high-heeled jogging and running. Subjects were divided into groups of experienced wearers and inexperienced wearers. A three-dimensional motion analysis system with a configured force platform captured lower-limb joint movements and GRF.
A limited number of studies have explored lower-limb biomechanics during high-heeled jogging and running, and most studies have failed to clarify the wearing experience of subjects. This protocol describes the differences in lower-limb kinematics and ground reaction force (GRF) between experienced wearers (EW) and inexperienced wearers (IEW) during moderate high-heeled jogging and running. A three-dimensional (3D) motion analysis system with a configured force platform was used to synchronously capture lower-limb joint movements and GRF. 36 young females volunteered to participate in this study and were asked about high-heeled shoe-wearing experience, including frequency, duration, heel types, and heel heights. Eleven who had the experience of 3 to 6 cm heels for a minimum of three days per week (6 h per day) for at least two years and eleven who wore high heels less than twice per month participated. Subjects performed jogging and running at comfortable low and high speeds, respectively, with the right foot completely stepping onto a force platform when passing by along a 10 m walkway. EW and IEW adopted different biomechanical adaptations while jogging and running. IEW exhibited a generally larger range of joint movement, while EW showed a dramatically larger loading rate of GRF during running. Hence, further studies on the lower-limb biomechanics of high-heeled gait should strictly control the wearing experience of the subjects.
High-heel design has always been one of the popular features of women's footwear. Forcing the ankle into a passive plantar-flexed state, high-heeled shoes considerably alter walking kinematics and kinetics. Despite reported adverse effects on the musculoskeletal system1, social and fashion customs encourage the continued use of high-heeled shoes2.
Optical tracking systems, currently used in the majority of gait-analysis laboratories for both clinical and research purposes, give accurate and reliable measurement of 3D lower-limb joint motions3. This technology provides a "gold standard" for gait analysis4. Consistent results based on the technique have revealed that higher heel heights lead to larger knee flexion and ankle inversion when compared with flat shoes5,6,7. GRF is another commonly used parameter in gait analysis. The shift of GRF toward the medial forefoot, reduced GRF during mid-stance, increased vertical GRF at heel-strike, and increased peak anterior-posterior GRF have also been observed in high-heeled walking1,6,7,8.
Previous studies referenced above use methods based mainly on level walking. In modern society, running for a bus, darting across a busy street, or dashing to catch the last train push more and more women to use higher speeds every now and then. There are limited studies concerning lower-limb biomechanics during high-heeled jogging and running. Gu et al. noted that the joint motion range of knee abduction-adduction and hip flexion-extension increased significantly as the heel height increased during jogging9. The limitation of this study is that they only recruited habitual high-heel wearers. The frequent use of high-heeled shoes can potentially induce structural adaptions in lower-limb muscles. Zöllner et al. created a multiscale computational model revealing that muscle is able to gradually adjust to its new functional length due to the use of high heels after a chronic loss of sarcomeres in series10. Evidence also demonstrates that kinematic accommodations in gait caused by high-heeled shoes vary between experienced and inexperienced wearers11. Data collected from both experienced and inexperienced subjects may mask statistical results12. It is important to explore whether the biomechanical changes are similarly obvious in inexperienced and experienced users.
The purpose of this study was to investigate the differences in lower-limb kinematics and vertical GRF between experienced wearers (EW) and inexperienced wearers (IEW) during moderate high-heeled jogging and running. It was hypothesized that EW would show faster self-preferred jogging and running speeds, less joint motion, and larger vertical GRF during jogging and running.
This study has been approved by the Human Ethics Committee of Ningbo University (ARGH20150356). All subjects gave their informed consent for inclusion in the study, and they were informed of the goal, requirements, and experimental procedures of the study.
1. Gait Laboratory Preparation
2. Subject Preparation
Figure 1: Experimental protocol. 8 infrared cameras capture lower-limb motion while the subject jogs and runs along the runway. The right foot naturally strikes and completely contacts the force platform when passing by. Kinematic and kinetic data were collected synchronically. Please click here to view a larger version of this figure.
3. Static Calibration
4. Dynamic Trials
Figure 2: User interface for dynamic data collection. Please click here to view a larger version of this figure.
5. Post-processing using Proprietary Tracking Software
6. Data Analysis
7. Statistical Analysis
All results are presented here as the mean ± standard deviation. The running speed was significantly greater than the jogging speed, regardless of wearing experience (EW: Jog vs. Run: 2.50 ± 0.14 vs. 3.05 ± 0.14, p = 0.010; IEW: Jog vs. Run: 2.24 ± 0.26 vs. 2.84 ± 0.29, p = 0.028; in m/s) (Table 1). No significant difference in the corresponding jogging/running speeds between EW and IEW was fou...
One defect of most studies that analyze high-heeled gait biomechanics is ignoring the possible importance of experience wearing high heels12. This study divided subjects into groups of regular and occasional wearers to explore the effects of high-heeled shoe wearing experience on lower-limb kinematics and GRF during moderate high-heeled jogging and running.
EW and IEW showed comparable jogging/running speeds. Compared with EW, IEW adopted a higher stride frequency and a...
The authors have nothing to disclose.
This study is sponsored by the National Natural Science Foundation of China (81301600), K. C. Wong Magna Fund in Ningbo University, National Social Science Foundation of China (16BTY085), the Zhejiang Social Science Program "Zhi Jiang youth project" (16ZJQN021YB), Loctek Ergonomic Technology Corp, and Anta Sports Products Limited.
Name | Company | Catalog Number | Comments |
Motion Tracking Cameras | Oxford Metrics Ltd., Oxford, UK | MX cameras | n= 8 |
Vicon Nexus | Oxford Metrics Ltd., Oxford, UK | Version 1.4.116 | Proprietary tracking software (PlugInGait template) |
Dongle | Oxford Metrics Ltd., Oxford, UK | - | - |
MX Ultranet HD | Oxford Metrics Ltd., Oxford, UK | - | - |
Vicon Datastation ADC | Oxford Metrics Ltd., Oxford, UK | - | External ADC |
Passive Retro-reflective Marker | Oxford Metrics Ltd., Oxford, UK | - | n=16; Diametre=14 mm |
Force Platform Amplifier | Kistler, Switzerland | 5165A | n=1 |
Force Platform | Kistler, Switzerland | 9287C | n=1 |
T-Frame | Oxford Metrics Ltd., Oxford, UK | - | - |
Double Adhesive Tape | Oxford Metrics Ltd., Oxford, UK | - | For fixing markers to skin |
moderate high-heeled shoe | Daphne, Hong Kong | 13085015 | Heel height: 4.5cm; Size:37EURO |
Microsoft Excel | Microsoft Corporation, United States | Version 2010 | For low pass filtering data and calculations; Add-in:Butterworth.xla |
Origin | OriginLab Corporation, United States | Version 9.0 | Plot GRF-time curve |
Stata | Stata Corp, College station, TX | Version 12.0 | Statistical analysis |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone