Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We describe a procedure to optically trap micro-particles in nanoplasmonic optical lattice.
The plasmonic optical tweezer has been developed to overcome the diffraction limits of the conventional far field optical tweezer. Plasmonic optical lattice consists of an array of nanostructures, which exhibit a variety of trapping and transport behaviors. We report the experimental procedures to trap micro-particles in a simple square nanoplasmonic optical lattice. We also describe the optical setup and the nanofabrication of a nanoplasmonic array. The optical potential is created by illuminating an array of gold nanodiscs with a Gaussian beam of 980 nm wavelength, and exciting plasmon resonance. The motion of particles is monitored by fluorescence imaging. A scheme to suppress photothermal convection is also described to increase usable optical power for optimal trapping. Suppression of convection is achieved by cooling the sample to a low temperature, and utilizing the near-zero thermal expansion coefficient of a water medium. Both single particle transport and multiple particle trapping are reported here.
The optical trapping of micro-scale particles was originally developed by Arthur Askin in the early 1970s. Ever since its invention, the technique has been developed as a versatile tool for micro- and nanomanipulation1,2. Conventional optical trapping based on the far-field focusing principle is inherently limited by the diffraction in its spatial confinement, wherein the trapping force decreases dramatically (following an ~a3 law for a particle of radius a)3. To overcome such diffraction limits, researchers have developed near-field optical trapping techniques based on the evanescent optical field using plasmonic metallic nanostructures and, furthermore, the trapping of nanoscale objects down to single protein molecules has been demonstrated4,5,6,7,8,9,10,11. Moreover, the plasmonic optical lattice is created from arrays of periodic plasmonic nanostructures to confer long range transport of micro- and nanoparticles and multiple particle stacking11,12. One major obstacle to disrupt trapping in an optical lattice is photothermal convection and efforts have been made to elucidate its effects by several groups14,15,16,17. Using Green's function, Baffou et al. have calculated a temperature profile by modeling each plasmonic nanostructure as a point heater and then experimentally validated their model14. Toussant's group has also measured the plasmon-induced convection with particle velocimetry15. The author's group has also characterized both near-field and convectional transport and demonstrated an engineering strategy to suppress photothermal convection16,17.
Here we present the design of an optical setup and a detailed procedure specifically for trapping experiments with plasmonic optical lattice. The optical potential was created by illuminating an array of gold nanodiscs with a loosely focused Gaussian beam. A scheme to suppress the photothermal convection by cooling down the sample to a low temperature (~4 °C) for optimal trapping is also describe here17. Under Boussinesq approximation, an order of magnitude estimate for the natural convection velocity u is given by u ~L2 gβΔT / v, where L is the length scale of the heat source and ΔT is the temperature increase relative to the reference due to the heating. g and β are the gravitational acceleration and thermal expansion coefficient, respectively. At temperatures near 4 °C, the density of the water medium exhibits anomalous temperature dependence and this translates into a near-zero thermal expansion coefficient and, therefore, a vanishingly small photothermal convection.
1. Optical Setup
Note: The principle of the optical setup is illustrated in Figure 1.
2. Nanofabrication
3. Sample cooling system and its temperature calibration
NOTE: The sample cooling stage design is shown in Supplementary Figure 2.
4. Trapping of Microparticles
Single particle trajectories were recorded by a CCD camera in our experiment and the images were then processed with a custom program to extract each particle's trajectory16. Representative results are displayed in Figure 3 and Video 1 for micro-spheres with diameters of 2 µm. Multiple particle trappings inside the optical lattice were observed. Successive images extracted from a representative motion video of...
The procedure described here enables the reader to reliably reproduce trapping on a daily basis. A general empirical guideline to design a usable optical lattice is to use a comparable size for plasmonic nanoarray, interdisc distance, and trapped particle size. Compared to a single, isolated plasmonic nanostructure, the optical lattice design in conjunction with the high optical power afforded by cooling the sample to ~4 °C used here greatly enhances the trapping probability. If well separated, plasmonic nanostructu...
The authors have nothing to disclose.
Y. T. Y. would like to acknowledge funding support from the Ministry of Science and Technology under grant numbers MOST 105-2221-E-007-MY3 and from the National Tsing Hua University under grant numbers 105N518CE1 and 106N518CE1.
Name | Company | Catalog Number | Comments |
Thermoelectric cooling element | Thorlabs | TEC 1.4-6 | TEC element for sample cooling |
RTD thermometer | Omega Engineering | RTD Thermometer 969C | |
Forward looking infrared camera | FLIR | FLIR One | IR camera for temperature monitoring |
light emitting diode light source | Touchbright | Light source for illumination for fluorescent imaging | |
Long working distance objective | Olympus | LMPLFLN | For illuminating the sample and imaging |
Optical trap kit | Thorlabs | OTKB/M | |
Cover slip | thickness 0.17 mm | ||
Scanning electron microscope | Hitachi | SEM-Hitachi S3400N | |
Electron beam blanker | DEBEN | PCD beam blanker | the blanker is added to the scanning electron microscope |
Thermal evaporator | SYSKEY Technology | ||
Mask aligner | Karl Suss | MJB 3 | For marker fabrication |
Electron beam resist | Sigma Alrich | PMMA 120K | For e-beam lithography |
Electron beam resist | Sigma Alrich | PMMA 960K | For e-beam lithography |
Fluoresent labeled polystyrene microspheres | Polyscience | 2 um diameter | |
Bipolar transistor | Mouser | 2N3904 | quantity 2 for TEC driver circuit |
Bipolar transistor | Mouser | 2N3906 | quantity 2 for TEC driver circuit |
MOSFET power transistor | Mouser | IRF5305 | quantity 2 for TEC driver circuit |
MOSFET power transistor | Mouser | IRF131ON | quantity 2 for TEC driver circuit |
10 kOhm resistor | Mouser | quantity 6 for TEC driver circuit | |
910 Ohm resistor | Mouser | quantity 2 for TEC driver circuit | |
Photoresist | Microchemicals | AZ4620 | For marker fabrication |
Acetone | Sigma Alrich | For marker fabrication | |
Fluorescence Module for the OTKB/M, Metric Threads | Thorlabs | OTKB-FL/M | |
Fluorescent filter set | Thorlabs | MDF-FITC | For Fluorescein Isothiocyanate (FITC) |
Ultrasonic cleaner | Delta | DC150H | For the lift off step |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone