Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This study presents a protocol of designing and manufacturing a glasses-type wearable device that detects the patterns of food intake and other featured physical activities using load cells inserted in both hinges of the glasses.
This study presents a series of protocols of designing and manufacturing a glasses-type wearable device that detects the patterns of temporalis muscle activities during food intake and other physical activities. We fabricated a 3D-printed frame of the glasses and a load cell-integrated printed circuit board (PCB) module inserted in both hinges of the frame. The module was used to acquire the force signals, and transmit them wirelessly. These procedures provide the system with higher mobility, which can be evaluated in practical wearing conditions such as walking and waggling. A performance of the classification is also evaluated by distinguishing the patterns of food intake from those physical activities. A series of algorithms were used to preprocess the signals, generate feature vectors, and recognize the patterns of several featured activities (chewing and winking), and other physical activities (sedentary rest, talking, and walking). The results showed that the average F1 score of the classification among the featured activities was 91.4%. We believe this approach can be potentially useful for automatic and objective monitoring of ingestive behaviors with higher accuracy as practical means to treat ingestive problems.
Continuous and objective monitoring of food intake is essential for maintaining energy balance in the human body, as excessive energy accumulation may cause overweightness and obesity1, which could result in various medical complications2. The main factors in the energy imbalance are known to be both excessive food intake and insufficient physical activity3. Various studies on the monitoring of daily energy expenditure have been introduced with automatic and objective measurement of physical activity patterns through wearable devices4,5,6, even at the end-consumer level and medical stage7. Research on the monitoring of food intake, however, is still in the laboratory setting, since it is difficult to detect the food intake activity in a direct and objective manner. Here, we aim to present a device design and its evaluation for monitoring the food intake and physical activity patterns at a practical level in daily life.
There have been various indirect approaches to monitor the food intake through chewing and swallowing sounds8,9,10, movement of the wrist11,12,13, image analysis14, and electromyogram (EMG)15. However, these approaches were difficult to apply to daily life applications, because of their inherent limitations: the methods using sound were vulnerable to be influenced by environmental sound; the methods using the movement of the wrist were difficult to distinguish from other physical activities when not consuming food; and the methods using the images and EMG signals are restricted by the boundary of movement and environment. These studies showed the capability of automated detection of the food intake using sensors, but still had a limitation of practical applicability to everyday life beyond laboratory settings.
In this study, we used the patterns of temporalis muscle activity as the automatic and objective monitoring of the food intake. In general, the temporalis muscle repeats the contraction and relaxation as a part of masticatory muscle during the food intake16,17; thus, the food intake activity can be monitored by detecting the periodic patterns of temporalis muscle activity. Recently, there have been several studies utilizing the temporalis muscle activity18,19,20,21, which used the EMG or piezoelectric strain sensor and attaching them directly onto human skin. These approaches, however, were sensitive to the skin location of the EMG electrodes or strain sensors, and were easily detached from the skin due to the physical movement or perspiration. Therefore, we proposed a new and effective method using a pair of glasses that sense the temporalis muscle activity through two load cells inserted in both the hinges in our previous study22. This method showed great potential of detecting the food intake activity with a high accuracy without touching the skin. It was also un-obtrusive and non-intrusive, since we used a common glasses-type device.
In this study, we present a series of detailed protocols of how to implement the glasses-type device and how to use the patterns of temporalis muscle activity for monitoring the food intake and physical activity. The protocols include the process of hardware design and fabrication that consists of a 3D-printed frame of the glasses, a circuit module, and a data acquisition module, and include the software algorithms for data processing and analysis. We furthermore examined the classification among several featured activities (e.g., chewing, walking, and winking) to demonstrate the potential as a practical system that can tell a minute difference between the food intake and other physical activity patterns.
NOTE: All the procedures including the use of human subjects were accomplished by a non-invasive manner of simply wearing a pair of glasses. All the data were acquired by measuring the force signals from load cells inserted in the glasses that were not in direct contact with the skin. The data were wirelessly transmitted to the data recording module, which, in this case is a designated smartphone for the study. All the protocols were not related to in vivo/in vitro human studies. No drug and blood samples were used for the experiments. Informed consent was obtained from all subjects of the experiments.
1. Manufacturing of a Sensor-integrated Circuit Module
2. 3D Printing of a Frame of the Glasses
3. Assembly of All Parts of the Glasses
4. Development of a Data Acquisition System
NOTE: The data acquisition system is composed of a data transmitting module and a data receiving module. The data transmitting module reads the time and the force signals of both sides, and then sends them to the data receiving module, which gathers the received data and writes them to .tsv files.
5. Data Collection from a User Study
NOTE: This study collected six featured activity sets: sedentary rest (SR), sedentary chewing (SC), walking (W), chewing while walking (CW), sedentary talking (ST), and sedentary wink (SW).
6. Signal Preprocessing and Segmentation
NOTE: The left and right signals are calculated separately in the following procedures.
7. Generation of Feature Vectors
NOTE: A feature vector is generated per frame produced in section 6 of the protocol. The left and right frames are calculated separately and combined into a feature vector in the following procedures. All the procedures were implemented in MATLAB.
8. Classification of the Activities into Classes
NOTE: This step is to select the classifier model of a support vector machine (SVM)23 by determining parameters that show the best accuracy from the given problem (i.e., feature vectors). The SVM is a well-known supervised machine learning technique, which shows excellent performance in generalization and robustness using a maximum margin between the classes and a kernel function. We used a grid-search and a cross-validation method to define a penalty parameter C and a kernel parameter γ of the radial basis function (RBF) kernel. A minimum understanding of machine learning techniques and the SVM is required to perform the following procedures. Some referential materials23,24,25 are recommended for better understanding of machine learning techniques and the SVM algorithm. All the procedures in this section were implemented using LibSVM25 software package.
Through the procedures outlined in the protocol, we prepared two versions of the 3D printed frame by differentiating the length of the head piece, LH (133 and 138 mm), and the temples, LT (110 and 125 mm), as shown in Figure 4. Therefore, we can cover several wearing conditions, which can be varied from the subjects' head size, shape, etc. The subjects chose one of the frames to fit to their head for the user study. The vert...
In this study, we first proposed the design and manufacturing process of glasses that sense the patterns of food intake and physical activities. As this study mainly focused on the data analysis to distinguish the food intake from the other physical activities (such as walking and winking), the sensor and data acquisition system required the implementation of mobility recording. Thus, the system included the sensors, the MCU with wireless communication capability, and the battery. The proposed protocol provided a novel a...
The authors have nothing to disclose.
This work was supported by Envisible, Inc. This study was also supported by a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI15C1027). This research was also supported by the National Research Foundation of Korea (NRF-2016R1A1A1A05005348).
Name | Company | Catalog Number | Comments |
FSS1500NSB | Honeywell, USA | Load cell | |
INA125U | Texas Instruments, USA | Amplifier | |
ESP-07 | Shenzhen Anxinke Technology, China | MCU with Wi-Fi module | |
74LVC1G3157 | Nexperia, The Netherlands | Multiplexer | |
MP701435P | Maxpower, China | LiPo battery | |
U1V10F3 | Pololu, USA | Voltage regulator | |
Ultimaker 2 | Ultimaker, The Netherlands | 3D printer | |
ColorFabb XT-CF20 | ColorFabb, The Netherlands | Carbon fiber filament | |
iPhone 6s Plus | Apple, USA | Data acquisition device | |
Jelly Belly | Jelly Belly Candy Company, USA | Food texture for user study |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone