Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Plankton and suspended particles play a major role in the biogeochemical cycles in the ocean. Here, we provide an ultra-clean, low stress method for the collection of various sizes of particles and plankton at sea with the capability of handling large volumes of seawater.
The distributions of many trace elements in the ocean are strongly associated with the growth, death, and re-mineralization of marine plankton and those of suspended/sinking particles. Here, we present an all plastic (Polypropylene and Polycarbonate), multi-layer filtration system for collection of suspended particulate matter (SPM) at sea. This ultra-clean sampling device has been designed and developed specifically for trace element studies. Meticulous selection of all non-metallic materials and utilization of an in-line flow-through procedure minimizes any possible metal contamination during sampling. This system has been successfully tested and tweaked for determining trace metals (e.g., Fe, Al, Mn, Cd, Cu, Ni) on particles of varying size in coastal and open ocean waters. Results from the South China Sea at the South East Asia Time-Series (SEATS) station indicate that diurnal variations and spatial distribution of plankton in the euphotic zone can be easily resolved and recognized. Chemical analysis of size-fractionated particles in surface waters of the Taiwan Strait suggests that the larger particles (>153 µm) were mostly biologically derived, while the smaller particles (10 - 63 µm) were mostly composed of inorganic matter. Apart from Cd, the concentrations of metals (Fe, Al, Mn, Cu, Ni) decreased with increasing size.
Particles in the ocean play an important role in marine biogeochemical cycles1. Most of the properties of particles, such as size, mineralogy, and composition, can change profoundly from one geological or hydrographical setting to another2. In addition, the distributions of elements in the ocean are also associated with the life cycle of marine phytoplankton: growth, death, sinking, and re-mineralization3,4. Marine particles span at least 4 orders of magnitude in size, ranging from submicron particles to large aggregates (>5 mm). Most particles are biologically derived, from processes such as viral lysis, exudation, secretion, fecal pellet production, etc. Other particles are formed from physical coagulation of cells, cellular debris, or lithogenic materials1. Various chemical and biological characteristics of particles control both the geochemical cycles and biological processes occurring on and within the particles4,5,6. These particles are important habitats as well as food sources for some organisms, such as zooplankton or saprotrophs. Accordingly, the fate of particles is often related to their size, which can be modified by biological processes on and around particles.
Sampling marine particles usually requires filtration, but this approach introduces a certain ambiguity in identifying the properties of particles, since marine particles are not homogenous in composition and size. Suspended particles, mainly composed of small and low density particles that are almost permanently in suspension, are mixed with varying amounts of larger and denser particles in suspension only for a short period of time, depending on hydrodynamic conditions7. The first reports of the trace metal composition of plankton samples were collected by plankton tows or suspending plankton nets on a research vessel8. The authors often found metal particles and paint chips in samples, suggesting a severe problem of contamination during marine particle sampling for chemical analysis. Other efforts include net towing by rubber rafts or using a polyvinyl chloride (PVC)-hand winch3. The difficulty of reliable sampling of particles makes progress in our understanding of the chemical composition of marine particles more difficult, especially for trace elements. As such, most crucial information on the concentration of trace elements in phytoplankton has come from culture studies9,10. This recognition has motivated marine scientists to create new methods for studying particles in the sea over the past thirty years11.
Oceanographers have used various sampling techniques, including shipboard filtration, in situ filtration, and sediment traps11. The processing of large volumes of sea-water to collect non-contaminated samples can be challenging, especially for open ocean and deep waters in which the particle concentrations are very low (0.001 - 0.1 mg/L). It is also necessary to filter large volumes of sea-water to obtain an adequate quantity of particles to measure trace metal concentrations. Some researchers have used the size-fractionation method to separate suspended particles from sinking particles. However, particle size, porosity, density, and shape can all influence particle sinking velocities. Sediment traps are not practical tools to collect suspended particles, since those are designed for sinking particles. Therefore, it is important to develop sampling and treatment methods that can collect sufficient quantities of suspended particles with minimal contamination. Hence, size-fractionation by in situ filtration is still a promising tool in the oceanographer's sampling toolbox, since it can reveal critical information on marine particle dynamics. Here, we describe a successfully tested trace-metal-clean, multi-layer gravity filtration sampling apparatus, which can treat large volumes (120 - 240 L) of seawater on board in one pass from polytetrafluoroethylene (PTFE) coated water sampling bottles in a multi-bottle sampling array. This sampling apparatus uses acid-washed synthetic nylon nets in sequence, and the nets are enclosed within a polycarbonate container to gently collect size-fractionated suspended matter and phytoplankton12,13,14,15 (Figure 1). The aim of this work is to provide a better tool for studying the metal-particle associations and their reaction dynamics in marine environments, and improve our understanding of the fate of a wide variety of planktons, particles, and trace metals in these environments.
The following protocol involves working with harmful chemicals. Please read the Safety Data Sheets (SDS) carefully, and follow institutional chemical safety guidelines.
1. Multi-layer Gravity Filtration Sampler Preparation
2. Sampling
3. Sample Treatment
With the development of modern oceanography, it is now a common practice to use "clean techniques" to obtain accurate trace metal concentrations in marine particles or plankton. Since most particles in natural waters are in the low mg/L to µg/L range, the treatment of large volumes of seawater is necessary to investigate geochemical and biological effects of trace metals on various particles in ambient environments. With the use of clean, multi-layer gravity filtration ("...
Obtaining reliable trace metal concentrations on plankton and suspended particles in natural waters, which are generally present at very low concentrations, requires great care during sample collection, processing, pretreatments, and analysis, with the aim of reducing contamination. Therefore, the procedures to design and prepare sampling gear, sample containers, and materials used to collect and process samples are all critical steps toward obtaining high-quality data for trace metals in marine environments. With the ad...
The co-author, Mr. Alan Chuang is the patent co-owner and the general manager of the company (Sino Instruments Co., Ltd.) which manufactured this collection apparatus for interested users. The patent ended in May 9th, 201512.
The authors thank Miss Pi-Fen Lin, Mr. Wei-Lung Tseng, Miss Pei-Hsuan Lin, and Dr. Jia-Lu Chuan for their assistance during the field sampling and lab analysis for the practical development and application of "CATNET." The assistance of crew and technician on board research vessel Ocean Research-I and Ocean Research-II during the sampling expeditions is greatly appreciated. This work was supported partly by Taiwan Ministry of Science and Technology of grants 91-2611-M-002-007, 95-2611-M-002 -009, 96-2611-M-002-004, 97-3114-M-002-006, 104-2611-M-002-019. This manuscript is written in memory of Miss Wen-Huei Lee for her immense dedication and contribution to marine researches in Taiwan.
Name | Company | Catalog Number | Comments |
thermoplastic elastomer (C-Flex) Tubings | Cole Palmer | EW-06424-67 | O.D. 0.635 cm, Opaque White 1/8"ID x 1/4"OD, 25 ft/pack |
LDPE Bottle (Nalgene) | ThermoFisher Scientific | 2103-0004 | 125 mL, Nalgene Wide-Mouth LDPE Bottles with Closure |
anionic protease enzyme detergent detergent (Tergazyme) | Alconox | 1104-1 | 1×4 lb box (1.8 kg) |
Hydrochloric Acid | Sigma-Aldrich | 258148 | Reagent grade |
Nitric acid | Sigma-Aldrich | 695025 | Reagent grade |
alkaline detergnet (Micro) | Cole Palmer | EW-99999-14 | Micro-90 Cleaning Solution |
polycarbonate filter, 47 mm, 0.4 µm | Sigma-Aldrich | WHA111107 | Whatman Nuclepore Track-Etched Membranes, diam. 47 mm, pore size 0.4 μm, polycarbonate |
polycarbonate filter, 47 mm, 10 µm | Sigma-Aldrich | WHA111115 | Whatman Nuclepore Track-Etched Membranes, diam. 47 mm, pore size 10 μm, polycarbonate |
PFA vessel, 60 ml capacity | Savillex | 300-060-03 | 60 mL Digestion Vessel, Flat Interior, Flat Exterior, Buttress Threaded Top |
Nitric acid, ultrapure | Seastar Chemicals | N/A | BASELINE Nitric Acid |
HF, ultrapure | Seastar Chemicals | N/A | BASELINE Hydrofluoric Acid |
Boric acid, ultrapure | Seastar Chemicals | N/A | BASELINE Hydrobromic Acid |
polyethylene (PE) gloves | Safty Zone | GDPL-MD-5 | Clear Powder Free Polyethylene Gloves |
Multiple layer filtering and collecting device | Sino Instrumnets Co. Ltd | not available | Multiple layer filtering and collecting device, CATNET |
10 um Nylon filters, Nitex | Dynamic Aqua-Supply Ltd. | NTX 10 | Nitex - Standard Widths (40 - 44 inches) |
60 um Nylon filters, Nitex | Dynamic Aqua-Supply Ltd. | NTX 60 | Nitex - Standard Widths (40 - 44 inches) |
150 um Nylon filters, Nitex | Dynamic Aqua-Supply Ltd. | NTX 150 | Nitex - Standard Widths (40 - 44 inches) |
torque wrench | Halfords | 200238 | Halfords Professional Torque Wrench 8-60Nm |
multi-bottle sampling array, Rosette | General Oceanics | Model 1018 | Rosette Sampler |
PTFE-coated sampling bottles, GO-Flo | General Oceanics | 108020T | GO-Flo water sampler teflon coated |
Marine sediment reference materials | National Research Council Canada | MESS-3 | |
Estuarine sediment standard reference material | National Institute of Standards and Technology | 1646a | |
Plankton reference material | The European Commission's science and knowledge service | CRM414 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone