Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, we present a general protocol to prepare a variety of microhoneycomb monoliths (MHMs) in which fluid can pass through with an extremely low pressure drop. MHMs obtained are expected to be used as filters, catalyst supports, flow-type electrodes, sensors and scaffolds for biomaterials.
Monolithic honeycomb structures have been attractive to multidisciplinary fields due to their high strength-to-weight ratio. Particularly, microhoneycomb monoliths (MHMs) with micrometer-scale channels are expected as efficient platforms for reactions and separations because of their large surface areas. Up to now, MHMs have been prepared by a unidirectional freeze-drying (UDF) method only from very limited precursors. Herein, we report a protocol from which a series of MHMs consisting of different components can be obtained. Recently, we found that cellulose nanofibers function as a distinct structure-directing agent towards the formation of MHMs through the UDF process. By mixing the cellulose nanofibers with water soluble substances which do not yield MHMs, a variety of composite MHMs can be prepared. This significantly enriches the chemical constitution of MHMs towards versatile applications.
As a brand-new material, microhoneycomb monolith (denoted MHM) has recently attracted tremendous attention from multidisciplinary fields1,2,3,4,5,6,7,8. The MHM was first prepared by S. Mukai et al. through a modified unidirectional freeze-drying (UDF) approach as a monolith with an array of straight microchannels with honeycomb-like cross sections9. MHM possesses the general advantages of honeycomb structures, i.e., efficient tessellation, high strength-to-weight ratio, and low pressure drop. Moreover, compared with the honeycomb monolith with a larger channel size, the MHM has a much larger specific surface area. The UDF method involves the unidirectional growth of ice crystals and simultaneous phase separation upon freezing. After the removal of the ice crystals, a solid component molded by the ice crystal is obtained. The morphology formed upon the phase separation depends on the intrinsic nature of the precursor (sol or gel), and in most of cases, lamella10, fiber11, and fishbone12 structures are likely to form rather than the MHMs. As a result, the formation of MHMs has been reported only in limited precursors, and this has significantly hampered the diversity of their chemical property. We have recently found that cellulose nanofibers have a strong structure-directing function toward forming the MHM structure through the UDF process13. Simply by mixing the cellulose nanofibers with other water-dispersible components, it is possible to prepare a variety of MHMs with different chemical properties. Moreover, their exterior shapes and channel sizes are flexibly and easily controlled13. Thus, MHMs are expected to be used as filters, catalyst supports, flow-type electrodes, sensors and scaffolds for biomaterials.
In this paper, we first explain the basic preparation technique of MHMs from the aqueous dispersion of cellulose nanofibers through the UDF process in detail. Moreover, we demonstrate the preparation of several different types of composite MHMs.
Access restricted. Please log in or start a trial to view this content.
1. Preparation of 1 wt% 2,2,6,6-Tetramethylpiperidin-1-oxyl (TEMPO)-mediated Oxidized Cellulose Nanofiber (TOCN) Sol
NOTE: The sol is defined as a colloidal suspension of very small solid particles in a continuous liquid medium.
2. Preparation of TOCN-styrene Butadiene Rubber (SBR) Mixed Sol
3. Preparation of TOCN-TiO2 Mixed Sol
4. Preparation of TOCN-surface Oxidized Carbon Fiber (SOCF) Mixed Sols
5. Preparation of Microhoneycomb Monolith from the 1 wt% TOCN Sol (Denoted MHM-TOCN)
6. Preparation of Microhoneycomb Monolith from the TOCN-SBR Mixed Sol (Denoted MHM-TOCN/SBR) and TOCN-TiO2 Mixed Sol (Denoted MHM-TOCN/TiO2 )
7. Preparation of Microhoneycomb Monolith from the TOCN-SOCF Mixed Sol (Denoted MHM-TOCN/SOCF)
Access restricted. Please log in or start a trial to view this content.
The morphologies for different positions of the MHM-TOCN along the direction of unidirectional freezing are investigated and shown in Figure 2. With the position being further away from the bottom part of the MHM-TOCN, a gradual morphology change was revealed (Figure 2, Discussion). By introducing a second component into the TOCN sol to form a homogeneous mixture sol, it is possible to prepare various kinds of co...
Access restricted. Please log in or start a trial to view this content.
The most critical step for achieving the MHMs is the unidirectional freezing step, during which water solidifies to form columnar ice crystals and push the dispersoid aside to form the framework. The unidirectional freezing process basically involves thermal transfer between the precursor sol and the coolant. In our setup, a dipping machine was used to insert a PP tube containing a precursor sol into the coolant (liquid nitrogen) with a constant velocity. Since liquid nitrogen keeps evaporating all the time, a fluctuant ...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work was supported by the National Basic Research Program of China (2014CB932400), National Natural Science Foundation of China (Nos. 51525204 and U1607206) and Shenzhen Basic Research Project (No. JCYJ20150529164918735). Also, we would like to thank Daicel-Allnex Ltd. and JSR Co. for kindly supplying polyurethanes and styrene butadiene rubber, respectively.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Nadelholz Bleached Kraft Pulp | Seioko PMC company | CSF=600 | |
TEMPO | Macklin Inc. | T819129 | 98% |
NaBr | Macklin Inc. | S818075 | AR, 99% |
NaClO | Aladin Inc. | S101636 | 6-14 wt% active chlorine basis |
SBR colloid | JSR corp. | TRD102A | 48.5 wt% |
TiO2 | Sinopharm Chemical Reagent Co., Ltd. | A63725402 | crystalline anatase phase |
carbon fiber | Shenzhen Xian’gu Ltd. | XGCP-300 | |
Nitric acid | Huada Reagent Ltd. | 7697-37-2 | 65-68 wt% |
Mixer | Scientific Industries, Inc | G-560 | the mixer |
Mechanical blender | Waring Lab Ltd. | MX1000XTX | For disintegrating cellulose bundles into nanofibers. |
Homogenizer | Scientz Ltd. | HXF-DY | For dispersing TiO2 nanoparticles |
pH meter | Horiba Ltd. | F-74BW |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone