Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Here we present a protocol to construct a pressure-controlled syringe pump to be used in microfluidic applications. This syringe pump is made from an additively manufactured body, off-the-shelf hardware, and open-source electronics. The resulting system is low-cost, straightforward to build, and delivers well-regulated fluid flow to enable rapid microfluidic research.
Microfluidics has become a critical tool in research across the biological, chemical, and physical sciences. One important component of microfluidic experimentation is a stable fluid handling system capable of accurately providing an inlet flow rate or inlet pressure. Here, we have developed a syringe pump system capable of controlling and regulating the inlet fluid pressure delivered to a microfluidic device. This system was designed using low-cost materials and additive manufacturing principles, leveraging three-dimensional (3D) printing of thermoplastic materials and off-the-shelf components whenever possible. This system is composed of three main components: a syringe pump, a pressure transducer, and a programmable microcontroller. Within this paper, we detail a set of protocols for fabricating, assembling, and programming this syringe pump system. Furthermore, we have included representative results that demonstrate high-fidelity, feedback control of inlet pressure using this system. We expect this protocol will allow researchers to fabricate low-cost syringe pump systems, lowering the entry barrier for the use of microfluidics in biomedical, chemical, and materials research.
Microfluidic tools have become useful for scientists in biological and chemical research. Due to the low volume utilization, rapid measurement capabilities, and well-defined flow profiles, microfluidics has gained traction in genomic and proteomic research, high-throughput screening, medical diagnostics, nanotechnology, and single-cell analysis1,2,3,4. Furthermore, the flexibility of microfluidic device design readily enables basic science research, such as investigating the spatiotemporal dynamics of cultured bacterial colonies5.
Many types of fluid injection systems have been developed to accurately deliver flow to microfluidic devices. Examples of such injection systems include peristaltic and recirculation pumps6, pressure-controller systems7, and syringe pumps8. These injection systems, including syringe pumps, are often composed of expensive precision engineered components. Augmenting these systems with closed-loop feedback control of pressure in the output flow adds to the cost of these systems. In response, we previously developed a robust, low-cost syringe pump system that uses closed-loop feedback control to regulate outputted flow pressure. By using closed-loop pressure control, the need for expensive precision-engineered components is abrogated9.
The combination of affordable 3D-printing hardware and a significant growth in associated open-source software has made the design and fabrication of microfluidic devices increasingly accessible to researchers from a variety of disciplines10. However, the systems used to drive fluid through these devices remain expensive. To address this need for a low-cost fluid control system, we developed a design that can be fabricated by researchers in the lab, requiring only a small number of assembly steps. Despite its low-cost and straightforward assembly, this system can provide precise flow control and provides an alternative to commercially available, closed-loop syringe pump systems, which can be prohibitively expensive.
Here, we provide protocols for the construction and use of the closed-loop controlled syringe pump system we developed (Figure 1). The fluid handling system is composed of a physical syringe pump inspired by a previous study11, a microcontroller, and a piezoresistive pressure sensor. When assembled and programmed with a proportional-integral-derivative (PID) controller, the system is capable of delivering a well-regulated, pressure-driven flow to microfluidic devices. This provides a low-cost and flexible alternative to high-cost commercial products, enabling a broader group of researchers to use microfluidics in their work.
1. 3D-printing and Assembly of Syringe Pump
2. Microfluidic Device Preparation
3. Feedback-controlled Syringe Pump System Assembly
4. Pressure Sensor Calibration
NOTE: Based on the amplifier chosen in this paper, the formula to calculate the gain is G = 5 + (200k/RG) with RG = R1 and G = amplifier gain. The amplifier gain here is approximately 606. This value can be changed by changing the resistance used for R1. In addition, as the logic level of the microcontroller board is 5 V and the instrumentation is powered with 10 V, a simple voltage divider circuit, R2 and R3, is used to safeguard the output signal to be no more than 5 V.
5. Capturing Images from the Microfluidic Device
6. Controlling Syringe Pressure Pumps
7. Tuning the PID Controller Parameters
NOTE: The ideal controller parameter values may vary depending on the application and the microfluidic device geometry. For example, for long-term studies (hours), a lower proportional constant (Kp) may be preferable to minimize overshoot at the expense of response time. These tradeoffs depend on experimental conditions and objectives.
Here, we present a protocol for the construction of a feedback-controlled syringe pump system and demonstrate its potential uses for microfluidic applications. Figure 1 shows the connected system of the syringe pump, pressure sensor, microfluidic device, microcontroller, pressure sensor circuit, and stepper motor driver. Detailed callouts for the syringe pump assembly are shown in Figure 2 and the electronic circuit schematic for...
Here, we presented a new design for a syringe pump system with closed-loop pressure control. This was accomplished by integrating a 3D-printed syringe pump with a piezoresistive pressure sensor and an open-source microcontroller. By employing a PID controller, we were able to precisely control the inlet pressure and provide fast response times while simultaneously maintaining the stability about a set point.
Many experiments using microfluidic devices require a precise fluidic control and expl...
The authors have nothing to disclose.
The authors acknowledge support from the Office of Naval Research awards N00014-17-12306 and N00014-15-1-2502, as well as from the Air Force Office of Scientific Research award FA9550-13-1-0108 and the National Science Foundation Grant No. 1709238.
Name | Company | Catalog Number | Comments |
Arduino IDE | Arduino.org | Arduino Uno R3 control software | |
Header Connector, 2 Positions | Digi-Key | WM4000-ND | |
Header Connector, 3 Positions | Digi-Key | WM4001-ND | |
Header Connector, 4 Positions | Digi-Key | WM4002-ND | |
Hook-up Wire, 22 Gauge, Black | Digi-Key | 1528-1752-ND | |
Hook-up Wire, 22 Gauge, Blue | Digi-Key | 1528-1757-ND | |
Hook-up Wire, 22 Gauge, Red | Digi-Key | 1528-1750-ND | |
Hook-up Wire, 22 Gauge, White | Digi-Key | 1528-1768-ND | |
Hook-up Wire, 22 Gauge, Yellow | Digi-Key | 1528-1751-ND | |
Instrumentation Amplifier | Texas Instruments | INA122P | |
Microcontroller, Arduino Uno R3 | Arduino.org | A000066 | |
Mini Breadboard | Amazon | B01IMS0II0 | |
Power Supply | BK Precision | 1550 | |
Pressure Sensor | PendoTech | PRESS-S-000 | |
Rectangular Connectors, Housings | Digi-Key | WM2802-ND | |
Rectangular Connectors, Male | Digi-Key | WM2565CT-ND | |
Resistors, 10k Ohm | Digi-Key | 1135-1174-1-ND | |
Resistors, 330 Ohm | Digi-Key | 330ADCT-ND | |
Stepper Motor Driver, EasyDriver | Digi-Key | 1568-1108-ND | |
USB 2.0 Cable, A-Male to B-Male | Amazon | PC045 | |
3D Printed Material, Z-ABS | Zortrax | A variety of colors are available | |
3D Printer | Zortrax | M200 | Printing out the syringe pump components |
Ball Bearing, 17x6x6mm | Amazon | B008X18NWK | |
Hex Machine Screws, M3x16mm | Amazon | B00W97MTII | |
Hex Machine Screws, M3x35mm | Amazon | B00W97N2UW | |
Hex Nut, M3 0.5 | Amazon | B012U6PKMO | |
Hex Nut, M5 | Amazon | B012T3C8YQ | |
Lathe Round Rod | Amazon | B00AUB73HW | |
Linear Ball Bearing | Amazon | B01IDKG1WO | |
Linear Flexible Coupler | Amazon | B010MZ8SQU | |
Steel Lock Nut, M3 0.5 | Amazon | B000NBKLOQ | |
Stepper Motor, NEMA-17, 1.8o/step | Digi-Key | 1568-1105-ND | |
Syringe, 10mL, Luer-Lok Tip | BD | 309604 | |
Threaded Rod | Amazon | B01MA5XREY | |
1H,1H,2H,2H-Perfluorooctyltrichlorosilane | FisherScientific | AAL1660609 | |
Camera Module | Raspberry Pi Foundation | V2 | |
Compact Oven | FisherScientific | PR305220G | Baking PDMS pre-polymer mixture and the device |
Dispensing Needle, 22 Gauge | McMaster-Carr | 75165A682 | |
Dispensing Needle, 23 Gauge | McMaster-Carr | 75165A684 | |
Fisherbrand Premium Cover Glasses | FisherScientific | 12-548-5C | |
Glass Culture Petri Dish, 130x25mm | American Educational Products | 7-1500-5 | |
Plasma Cleaner | Harrick Plasma | PDC-32G | Binding the cover glass with the PDMS device |
Razor Blades | FisherScientific | 7071A141 | |
Scotch Magic Tape | Amazon | B00RB1YAL6 | |
Single-board Computer | Raspberry Pi Foundation | Raspberry Pi 2 model B | |
Smart Spatula | FisherScientific | EW-06265-12 | |
Sylgard 184 Silicone Elastomer Kit | FisherScientific | NC9644388 | |
Syringe Filters | Thermo Scientific | 7252520 | |
Tygon Tubing | ColeParmer | EW-06419-01 | |
Vacuum Desiccator | FisherScientific | 08-594-15C | Degasing PDMS pre-polymer mixture and coating fluorosilane on the master mold |
Weighing Dishes | FisherScientific | S67090A |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone