Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol details a novel nano-manufacturing technique that can be used to make controllable and customizable nanoparticle films over large areas based on the self-assembly of dewetting of capped metal films.
Recent scientific advances in the utilization of metallic nanoparticle for enhanced energy conversion efficiency, improved optical device performance, and high-density data storage have demonstrated the potential benefit of their use in industrial applications. These applications require precise control over nanoparticle size, spacing, and sometimes shape. These requirements have resulted in the use of time and cost intensive processing steps to produce nanoparticles, thus making the transition to industrial application unrealistic. This protocol will resolve this issue by providing a scalable and affordable method for the large-area production of nanoparticle films with improved nanoparticle control compared to the current techniques. In this article, the process will be demonstrated with gold, but other metals can also be used.
Large-area nanoparticle film fabrication is critically important for the adoption of recent technological advances in solar energy conversion and high-density data storage with the use of plasmonic nanoparticles1,2,3,4,5. Interestingly, it is the magnetic properties of some of these plasmonic nanoparticles, which provide these nanoparticles with the ability to manipulate and control light at the nanoscale. This controllability of light provides the possibility to enhance light entrapment of the incident light at the nanoscale and increase the absorptivity of the surface. Based on these same properties and having the ability to have nanoparticles in either a magnetized and a non-magnetized state, scientists are also defining a new platform for high-density digital data storage. In each of these applications, it is critical that a large area and affordable nanofabrication technique is developed that allows for the control of nanoparticle size, spacing, and shape.
The available techniques to produce nanoparticles are mostly based on nanoscale lithography, which have significant scalability and cost issues. There have been multiple different studies that have attempted to address the scalability problem of these techniques, but to date, no process exists that provides the level of control needed for nanoparticle fabrication and is cost and time effective enough for adoption in industrial applications6,7,8,9,10,11. Some recent research efforts improved the controllability of pulsed laser induced dewetting (PLiD) and templated solid-state dewetting12,13,14, but they still have significant required lithography steps and thus the scalability problem.
In this manuscript, we present the protocol of a nanofabrication method that will address this scalability and cost issue that has plagued the adoption and use of nanoparticle films in widespread industrial applications. This processing method allows the control over the produced nanoparticle size and spacing by manipulating the surface energies which dictate the self-assembly of the nanoparticles formed. Here, we demonstrate the use of this technique using a thin gold film to produce gold nanoparticles, but we have recently published a slightly different version of this method using a nickel film and thus this technique can be used with any desired metal. The goal of this method is to produce nanoparticle films while minimizing the cost and complexity of the process and thus we have modified our previous approach, which used atomic layer deposition and nanosecond laser irradiation on a Ni-alumina system and replaced them with physical vapor deposition and a hot plate. The result of our work on a Ni-alumina system also showed an acceptable level of control on the morphology of the surface after the dewetting15.
NOTE: The large-area fabrication of controllable and customizable gold nanoparticle films is achieved by following the detailed protocol. The protocol follows three major areas that are (1) substrate preparation, (2) dewetting and etching, and (3) characterization.
1. Substrate Preparation
2. Dewetting and Etching
3. Characterization
The protocol described here has been used for multiple metals and has shown the ability to produce nanoparticles on a substrate over large-area, with controllable size and spacing. Figure 1 shows the protocol with representative results showing the ability to control the fabricated nanoparticle size and spacing. When following this protocol, the result, which is the fabricated nanoparticle film with size and spacing distributions, will be dependent upon the c...
The protocol is a feasible and easy process for a nano-manufacturing process for producing nanoparticles on a substrate over large areas with controllable characteristics. The dewetting phenomenon, which leads to the production of particles, is based on the tendency of the dewetted layer to achieve minimum surface energy. The control over the size and shape of the particles is targeted with the deposition of a second surface on the main layer to tune the surface energies, and the final equilibrium between the adhesion an...
The authors have nothing to disclose.
We acknowledge the support from the Microscopy Core Facility at Utah State University for the SEM result. We also acknowledge the National Science Foundation (Award #162344) for the DC Magnetron Sputtering System, the National Science Foundation (Award #133792) for the (Field Electron and Ion) FEI Quanta 650, and the Department of Energy, Nuclear Energy University Program for the FEI Nova Nanolab 600.
Name | Company | Catalog Number | Comments |
100 nm SiO2/Si Substrate | University Wafer | Thermal Oxide Wafer | |
Alumina Sputter Target (99.5%) | Kurt J. Lesker | Alumina Target | |
Gold Wire (99.99%) | Kurt J. Lesker | Gold Wire | |
H2O2 | Sigma-Aldrich | ||
Hot Plate | Thermo Scientific | Cimarec | |
NH4OH | Sigma-Aldrich | ||
Scanning Electron Microscope | FEI | Quanta 650 | |
Scanning Electron Microscope | FEI | Nova Nanolab 600 | |
Sputter Deposition System | AJA International | Orion-5 | |
Thermal Evaporator | Edwards | 360 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone