Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol details a novel nano-manufacturing technique that can be used to make controllable and customizable nanoparticle films over large areas based on the self-assembly of dewetting of capped metal films.

Abstract

Recent scientific advances in the utilization of metallic nanoparticle for enhanced energy conversion efficiency, improved optical device performance, and high-density data storage have demonstrated the potential benefit of their use in industrial applications. These applications require precise control over nanoparticle size, spacing, and sometimes shape. These requirements have resulted in the use of time and cost intensive processing steps to produce nanoparticles, thus making the transition to industrial application unrealistic. This protocol will resolve this issue by providing a scalable and affordable method for the large-area production of nanoparticle films with improved nanoparticle control compared to the current techniques. In this article, the process will be demonstrated with gold, but other metals can also be used.

Introduction

Large-area nanoparticle film fabrication is critically important for the adoption of recent technological advances in solar energy conversion and high-density data storage with the use of plasmonic nanoparticles1,2,3,4,5. Interestingly, it is the magnetic properties of some of these plasmonic nanoparticles, which provide these nanoparticles with the ability to manipulate and control light at the nanoscale. This controllability of light provides the possibility to enhance light entrapment of the incident lig....

Protocol

NOTE: The large-area fabrication of controllable and customizable gold nanoparticle films is achieved by following the detailed protocol. The protocol follows three major areas that are (1) substrate preparation, (2) dewetting and etching, and (3) characterization.

1. Substrate Preparation

  1. Clean the substrate (100 nm SiO2 on Si) using an acetone rinse followed by an isopropyl alcohol rinse and then dry using a stream of N2 gas.
  2. Load the substrate int.......

Representative Results

The protocol described here has been used for multiple metals and has shown the ability to produce nanoparticles on a substrate over large-area, with controllable size and spacing. Figure 1 shows the protocol with representative results showing the ability to control the fabricated nanoparticle size and spacing. When following this protocol, the result, which is the fabricated nanoparticle film with size and spacing distributions, will be dependent upon the c.......

Discussion

The protocol is a feasible and easy process for a nano-manufacturing process for producing nanoparticles on a substrate over large areas with controllable characteristics. The dewetting phenomenon, which leads to the production of particles, is based on the tendency of the dewetted layer to achieve minimum surface energy. The control over the size and shape of the particles is targeted with the deposition of a second surface on the main layer to tune the surface energies, and the final equilibrium between the adhesion an.......

Acknowledgements

We acknowledge the support from the Microscopy Core Facility at Utah State University for the SEM result. We also acknowledge the National Science Foundation (Award #162344) for the DC Magnetron Sputtering System, the National Science Foundation (Award #133792) for the (Field Electron and Ion) FEI Quanta 650, and the Department of Energy, Nuclear Energy University Program for the FEI Nova Nanolab 600.

....

Materials

NameCompanyCatalog NumberComments
100 nm SiO2/Si SubstrateUniversity WaferThermal Oxide Wafer
Alumina Sputter Target (99.5%)Kurt J. LeskerAlumina Target
Gold Wire (99.99%)Kurt J. LeskerGold Wire
H2O2Sigma-Aldrich
Hot PlateThermo ScientificCimarec
NH4OHSigma-Aldrich
Scanning Electron MicroscopeFEIQuanta 650
Scanning Electron MicroscopeFEINova Nanolab 600
Sputter Deposition SystemAJA InternationalOrion-5
Thermal EvaporatorEdwards360

References

  1. Pillai, S., Catchpole, K. R., Trupke, T., Green, M. A. Surface plasmon enhanced silicon solar cells. Journal of Applied Physics. 101 (9), 093105 (2007).
  2. Ding, B., Lee, B. J., Yang, M., Jung, H. S., Lee, J. -. K. Surface-Plasmon Assiste....

Explore More Articles

Nanoparticle FabricationSubstrate based NanofabricationGold NanoparticlesCapped DewettingParticle Size ControlThin Film DepositionThermal EvaporationMagnetron SputteringSolar EnergyPhotonicsData Storage

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved