Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
This protocol describes a method for calculating Heart Rate Variability (HRV) from electrocardiogram (ECG) waveforms. Waveforms from continuous heart rate (HR) recordings during active video game (AVG) sessions were used to measure the aerobic performance of youth with cerebral palsy (CP).
The aim of this study was to generate a method for calculating heart rate variability (HRV) from electrocardiogram (ECG) waveforms. The waveforms were recorded by a HR monitor that participants (youth with cerebral palsy (CP)) wore during active video game (AVG) sessions. The AVG sessions were designed to promote physical activity and fitness (aerobic performance) in participants. The goal was to evaluate the feasibility of AVGs as a physical therapy (PT) intervention strategy. The maximum HR (mHR) was determined for each participant and the Target Heart Rate Zone (THRZ) was calculated for each of three exercise phases in the 20 min AVG session: (warm-up at 40-60% mHR, conditioning at 60-80% mHR, and cool down at 40-60% mHR). Each participant played three 20 min games during the AVG session. All games were played while sitting on a bench because many youth with CP cannot stand for extended periods of time. Each game condition differed with participants using hand icons only, hand and feet icons together or feet icons only to collect objects. The objective of the game (called KOLLECT) is to collect objects to gain points and avoid hazards to not lose points. Hazards were used in the warm-up and cool down phases only to promote slower, controlled movement to maintain HR in the target heart rate zone (THRZ). There were no hazards in the conditioning phase to promote higher levels and more intense physical activity. Analytic methods were used to generate HRV (selected time-domain and frequency-domain measures) from ECG data to examine aerobic workload. Recent applications of HRV indicate that short-term measurements (5 min bouts) are appropriate and that HRV biofeedback may help improve symptoms and the quality of life in a variety of health conditions. Although HR is a well-accepted clinical measure to examine aerobic performance and intensity in PT interventions, HRV may provide information of the autonomic system functions, recovery and adaptation during AVG sessions.
Cerebral palsy (CP) is the most common physical disability of childhood1. CP is caused by a neurologic insult to the developing brain and is associated with motor impairments such as muscle weakness, spasticity, deconditioning, and decreased motor control and balance2,3. CP is a non-progressive condition but with age, children become less physically active and more sedentary compared to their peers with typical development (TD) mostly because of the increased demands of growth on their compromised neuromuscular and musculoskeletal systems4.
Youth with CP usually receive physical therapy (PT) services to improve functional mobility and promote physical activity and fitness (e.g. aerobic and muscular endurance)2. Oftentimes, there is limited access to PT services and community resources to achieve and sustain these PT goals5,6.Active video games (AVGs) may be a feasible strategy in activity-based PT interventions in clinic, home or community settings7,8. Commercial AVGs have limited flexibility to adapt game play and meet the specific needs and PT goals for youth with CP9. However, customized AVGs provide flexible gaming parameters to challenge youth with CP while promoting physical activity and fitness10.
Our team has developed a customized AVG (called KOLLECT) to examine youth exercise responses (e.g., physical activity and aerobic fitness). The game uses a motion sensor to track youth motion during game play. The goal of the game is to 'collect' as many objects as possible for a high score and to avoid the hazards to avoid losing points. Objects may be collected with hand and/or feet icons as determined by the therapist in the flexible game parameters.
Designing activity-based PT interventions that dose physical activity intensity to promote aerobic fitness is critical for youth with CP11. Custom AVGs may be an effective strategy to dose intensity and engage youth in physical activity to promote fitness10. Heart rate (HR) monitors are often used in clinical PT practice to determine aerobic performance and activity intensity. Therefore, HR monitors will help determine feasibility of AVGs in dosing physical activity intensity to promote aerobic fitness9. ECG data generated from a HR monitor can be used to calculate heart rate variability (HRV). Analytic methods were used to generate HRV from ECG data to examine aerobic workload. Recent applications of HRV indicate that short-term measurements (5 min bouts) are appropriate and that HRV biofeedback may help improve symptoms and the quality of life in a variety of health conditions32,33,34. The application of short-term HRV measures is an appropriate means of assessing cardiovascular function during AVG sessions. Given that HRV is derived from the R-R interval of an ECG, we used selected time-domain and frequency-domain measures. Time-domain measure of HRV quantify the amount of variablility in the interbeat intervals which represents the time between successive heartbeats. We used the AVNN (average NN interval), RMSSD (root mean square of successive differences), SDNN (standard deviation of NN interval), NN50 (number of NN intervals >50 ms) and PNN50 (percentage of NN intervals). Frequency domain measures estimate the distributionof absolute or relative power into possibly four frequency bands, we specifically addressed on two bands, low frequency (LF) power and high frequency (HF) power along with the LF/HF ratio. Although HR is a well-accepted clinical measure, HRV may be useful because it provides information about autonomic system function, recovery, adaptation, and provides an estimate of aerobic workload during an AVG session28.
The purpose of this study was to examine the feasibility of using AVG strategies to promote physical activity and fitness. A second purpose was to present the AVG data collection protocol and the methodology to calculate HRV from ECG data obtained via a HR monitor. These measures and this protocol may prove relevant to clinicians to monitor and dose PT intervention sessions.
Institutional Review Board approval was obtained. All youth provided written assent and parents provided consent prior to participation.
1. AVG data collection sessions
2. Acquire ECG Data from the Patient
3. Data Analysis and Calculation of Heart Rate Variability Measures
This method provides data for use in analyzing the effect that a newly developed method has on the subject's Heart Rate Variability (HRV). It does this by locating the R portion of the QRS waveform of a subject's ECG data, as shown in Figure 6, and by calculating various HRV values from it. If the HR monitor is making proper contact with the subject, the data will be uniform, substantially reducing the need for corrections (as seen in
Ten youth with CP participated in this study (mean + SD) [ age (yrs) = 15.53 ± 3.57 ; height (cm) 154.8 ± 12.6; weight (kg) 50.69 ± 11.1; body mass index (BMI) 50.46 ± 29.2; mHR 9 bpm) = 186.8 ± 12.4]. Please see Table 5 for patient demographics.
There are some considerations for use of HR monitors and the associated measures of HR and HRV which relate to modifications and troubleshooting. Two issues that are apparent, regardless of the technology empl...
At this time, the authors (CL and PAS) have nothing to disclose. Dr. O'Neil is a co-founder of enAbleGames, LLC and Kollect is one of the games offered by this web-based company. enAbleGames is in game development phase and is not a public company at this time (www.enAbleGames.com).
The authors thank the participants and their families for their time and effort expended for participation in the study. As well, the authors acknowledge Dr. Yichuan Liu and Dr. Hasan Ayaz for their assistance with the timing calculation of the HR monitoring and Dr. Paul Diefenbach for development of the KOLLECT Active Video Gaming software. Funding for this work was provided by Coulter Foundation Grants #00006143 (O’Neil; Diefenbach, PIs) and #00008819 (O’Neil; Diefenbach, PIs).
Name | Company | Catalog Number | Comments |
BioHarness Bluetooth Module (Electronics sensor) | Zephyr | 9800.0189 | Detects Heart Rate, Resiration Rate, Posture, and Skin Temperature. |
BioHarness Chest Strap | Zephyr | 9600.0189, 9600.0190 | Sizes Small XS-M, Large M-XL |
BioHarness Charge Cradle & USB Cable | Zephyr | 9600.0257 | Used to Transfer Data from the Module to a Computer for Analysis. |
BioHarness Echo Gateway | Zephyr | 9600.0254 | Allows for Realtime Viewing of Subject's Heart Rate. |
MATLAB R2016a | Mathworks | 1.7.0_.60 | Used for All Programming. |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone