Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We describe a novel method for generating double humanized BLT-mice that feature a functional human immune system and a stable engrafted human-like gut microbiome. This protocol can be followed without the need for germ-free mice or gnotobiotic facilities.
Humanized mice (hu-mice) that feature a functional human immune system have fundamentally changed the study of human pathogens and disease. They can be used to model diseases that are otherwise difficult or impossible to study in humans or other animal models. The gut microbiome can have a profound impact on human health and disease. However, the murine gut microbiome is very different than the one found in humans. There is a need for improved pre-clinical hu-mice models that have an engrafted human gut microbiome. Therefore, we created double hu-mice that feature both a human immune system and stable human-like gut microbiome. NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice are one of the best animals for humanization due to their high level of immunodeficiency. However, germ-free NSG mice, and various other important germ-free mice models are not currently commercially available. Further, many research settings do not have access to gnotobiotic facilities, and working under gnotobiotic conditions can often be expensive and time consuming. Importantly, germ-free mice have several immune deficiencies that exist even after the engraftment of microbes. Therefore, we developed a protocol that does not require germ-free animals or gnotobiotic facilities. To generate double hu-mice, NSG mice were treated with radiation prior to surgery to create bone-marrow, liver, thymus-humanized (hu-BLT) mice. The mice were then treated with broad spectrum antibiotics to deplete the pre-existing murine gut microbiome. After antibiotic treatment, the mice were given fecal transplants with healthy human donor samples via oral gavage. Double hu-BLT mice had unique 16S rRNA gene profiles based on the individual human donor sample that was transplanted. Importantly, the transplanted human-like microbiome was stable in the double hu-BLT mice for the duration of the study up to 14.5 weeks post-transplant.
Humanized mice (hu-mice) have transformed the study of many aspects of human health and disease including hematopoiesis, immunity, cancer, autoimmune disease, and infectious disease1,2,3,4,5,6,7,8,9. These hu-mice have the distinct advantage over other mouse models in that they have a functional human immune system and can be infected with human specific pathogens. Nevertheless, the importance of the gut microbiome has been demonstrated by its role in many human diseases such as obesity, metabolic syndrome, inflammatory diseases, and cancer10,11,12,13. The mucosal immune system and gut microbiome are reciprocally regulated to maintain gut and systemic homeostasis. The immune system is shaped by antigens presented by the gut microbiome and reciprocally the immune system plays an important regulatory role in promoting commensal gut bacteria and eliminating pathogens14,15,16. However, the gut microbiome of hu-mice has not been well characterized and the murine gut microbiome differs substantially in composition and function from humans17. This is due to evolutionary, physiological, and anatomical differences between the murine and human gut as well as other important factors such as diet, which may influence the experimental results of hu-mice disease models18. Therefore, beyond classification of murine gut microbiome of hu-mice, an animal model featuring both a human immune system and human gut microbiome is needed to study the complex interactions of human disease in vivo.
The study of human diseases directly in human subjects is often impractical or unethical. Many animal models cannot be used to study human pathogens like human immunodeficiency virus type 1 (HIV-1). Non-human primate models are genetically outbred, very expensive, and are not susceptible to many human pathogens. Mice that have been derived as germ free (GF) and reconstituted with human-like gut microbiomes have been widely used to study human health and disease19,20. However, these animals do not have a human immune system and working with GF animals requires specialized facilities, procedures, and expertise. Therefore, there is a need for improved pre-clinical models to study the complex relationship of the gut microbiome and the human immune system. Many strains of mice, such as NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG), are not commercially available as GF. GF animals also may suffer from long-lasting immune deficiencies that are not completely reversed by the engraftment of microbes21. Therefore, we created a double hu-mice featuring both a functional human immune system and stable human-like gut microbiome under specific pathogen free (SPF) conditions. To generate double hu-mice, surgery was performed on NSG mice to create bone-marrow, liver, thymus humanized mice (hu-BLT). The hu-BLT mice were then treated with broad spectrum antibiotics and then given fecal transplants with a healthy human donor sample. We characterized the bacterial gut microbiome of 173 fecal samples from 45 double hu-BLT mice and 4 human fecal donor samples. Double hu-BLT mice have unique 16S rRNA gene profiles based on the individual human donor sample that is transplanted. Importantly, the transplanted human-like microbiome was stable in the mice for the duration of the study up to 14.5 weeks post-transplant. In addition, the predicted metagenomes showed that double hu-BLT mice have different predicted functional capacity than hu-mice that is more similar to the human donor samples.
All methods described here were conducted in accordance with Institutional Animal Care and Research Committee (IACUC)-approved protocols at the University of Nebraska-Lincoln (UNL). The IACUC at UNL has approved two protocols related to generating and using hu-BLT mice, including double hu-mice. Additionally, the Scientific Research Oversight Committee (SROC) at UNL has also approved the use of human embryonic stem cells and fetal tissues, which are procured from the Advanced Bioscience Resources for humanized mice studies (SROC# 2016-1-002).
1. Mice housing and maintenance
2. Generation of humanized BLT mice
NOTE: Generation of hu-BLT mice has been described previously22,23,24.
3. Antibiotic treatment
4. Donor samples and fecal transplant
5. Fresh fecal sample collection
Figure 1 shows an outline of the methods used to create double hu-BLT mice and briefly describes the process of adding a functional human immune system and stable human-like gut microbiome to the NSG mice. Figure 2 shows an example of flow cytometry analysis of peripheral blood from a humanized BLT-mouse 10 weeks post-surgery. Figure 3 shows the relative abundance of the human fecal donor samples used to transfer a gut microbiome to...
The protocol described here is for the creation of double hu-BLT mice that feature both a functional human immune system and a stable human-like gut microbiome. This protocol can be adapted to other humanized or non-humanized mice models without the need for GF animals and gnotobiotic facilities. While the methods described here are relatively simple, there are several critical details that are important for the successful creation of double hu-BLT mice. NSG mice are extremely immunodeficient and preventing infections is...
The authors have nothing to disclose.
We would like to thank Yanmin Wan, Guobin Kang, and Pallabi Kundu for their assistance in generating BLT-humanized mice. We would like to acknowledge the UNMC Genomics Core Facility who receives partial support from the Nebraska Research Network In Functional Genomics NE-INBRE P20GM103427-14, The Molecular Biology of Neurosensory Systems CoBRE P30GM110768, The Fred & Pamela Buffett Cancer Center - P30CA036727, The Center for Root and Rhizobiome Innovation (CRRI) 36-5150-2085-20, and the Nebraska Research Initiative. We would like to thank University of Nebraska - Lincoln Life Sciences Annex and their staff for their assistance. This study is supported in part by the National Institutes of Health (NIH) Grants R01AI124804, R21AI122377-01, P30 MH062261-16A1 Chronic HIV Infection and Aging in NeuroAIDS (CHAIN) Center, 1R01AI111862 to Q Li. The funders had no role in study design, data collection and analysis, preparation of the manuscript or decision for publication.
Name | Company | Catalog Number | Comments |
Animal Feeding Needles 18G | Cadence Science | 9928B | |
Clidox-s Activator | Pharmacal Research Laboratories | 95120F | |
Clidox-s Base | Pharmacal Research Laboratories | 96125F | |
DGM 108 cage rack | Techniplast | ||
Flat Brown Grocery Bag 3-5/8"D x 6"W x 11-1/16"L | Grainger | 12R063 | |
FMT Upper Delivery Microbiota Preparations | OpenBiome | FMP30 | |
Grape Kool-Aid | Kraft Foods Inc. | ||
hCD19-PE/Cy5 | Biolegend | 302209 | |
hCD3-PE | Biolegend | 300408 | |
hCD4-Alexa 700 | Biolegend | 300526 | |
hCD45-FITC | Biolegend | 304006 | |
hCD8-APC/Cy7 | Biolegend | 301016 | |
Lactate Buffered Ringer's Solution | Boston BioProducts Inc | PY-906-500 | |
mCD45-APC | Biolegend | 103111 | |
Microvette 100 K3E | Microvette | 20.1278.100 | |
Neosporin First Aid Antibiotic/Pain Relieving Ointment | Neosporin | ||
NSG mice (NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ) | The Jackson Laboratory | 005557 | |
PrecisionGlide 25 G Needle | BD | 305127 | |
RS200 X-ray irradiator | RAD Source Technologies | ||
Sealsafe Plus GM500 microisolator cages | Techniplast | ||
Sterile Non-woven Gauze | Fisherbrand | 22-028-558 | |
Teklad global 16% protein irradiated mouse chow | Teklad | 2916 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone