Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Xenobiotic efflux pumps are highly active in hematopoietic stem and progenitor cells (HSPCs) and cause extrusion of TMRM, a mitochondrial membrane potential fluorescent dye. Here, we present a protocol to accurately measure mitochondrial membrane potential in HSPCs by TMRM in the presence of Verapamil, an efflux pump inhibitor.
As cellular metabolism is a key regulator of hematopoietic stem cell (HSC) self-renewal, the various roles played by the mitochondria in hematopoietic homeostasis have been extensively studied by HSC researchers. Mitochondrial activity levels are reflected in their membrane potentials (ΔΨm), which can be measured by cell-permeant cationic dyes such as TMRM (tetramethylrhodamine, methyl ester). The ability of efflux pumps to extrude these dyes from cells can limit their usefulness, however. The resulting measurement bias is particularly critical when assessing HSCs, as xenobiotic transporters exhibit higher levels of expression and activity in HSCs than in differentiated cells. Here, we describe a protocol utilizing Verapamil, an efflux pump inhibitor, to accurately measure ΔΨm across multiple bone marrow populations. The resulting inhibition of pump activity is shown to increase TMRM intensity in hematopoietic stem and progenitor cells (HSPCs), while leaving it relatively unchanged in mature fractions. This highlights the close attention to dye-efflux activity that is required when ΔΨm-dependent dyes are used, and as written and visualized, this protocol can be used to accurately compare either different populations within the bone marrow, or the same population across different experimental models.
Hematopoietic stem cells (HSCs) are self-renewing, multi-potent, and capable of giving rise to all the cells of the blood1,2. Cellular metabolism is a key regulator of HSC maintenance, along with transcriptional factors, intrinsic signals and the microenvironment3,4,5. The proper control of mitochondrial function and quality is therefore critical to HSC maintenance6,7.
Mitochondrial membrane potential (ΔΨm) is a key parameter in the assessment of mitochondria as it directly reflects their functionality, which derives from the equilibrium of proton pumping activity in the electron transport chain and the proton flow through F1/FO ATP synthase. These are both required (depending on gene expression and substrate availability) for the oxygen-dependent phosphorylation of ADP to ATP8,9. Taking advantage of the electronegativity of the mitochondrial compartment, various potentiometric dyes have been developed to measure ΔΨm. One of them is tetramethylrhodamine methyl ester perchlorate (TMRM), which has been extensively used to measure ΔΨm by flow cytometry in a variety of cells10, including hematopoietic stem and progenitor cells11.
Mitochondrial dyes must be used with some caution in HSCs, however, because the high activity of the xenobiotic efflux pumps of these cells can result in dye extrusion12. Indeed, the extrusion of mitochondrial dyes such as Rhodamine 123 has allowed researchers to isolate HSCs13 or identify HSC “side populations” by exploiting the differential extrusion of the dyes Hoechst Blue and Hoechst Red14,15. It has also been shown that Fumitremorgin C, a specific blocker of the ATP-binding cassette sub-family G member 2 (ABCG2) transporter, does not affect the staining pattern of MitoTracker in HSPCs16. After the publication of these results, multiple studies were performed using mitochondrial dyes in the absence of xenobiotic efflux pump inhibitors, leading to the widespread impression that HSCs have only a small number of mitochondria with low ΔΨm16,17,18.
Recently, it was demonstrated, however, that Verapamil, a wide spectrum inhibitor of efflux pumps, significantly modifies the staining pattern of the mitochondrial dye MitoTracker Green19. This discrepancy is likely due to the fact that Fumitremorgin C is highly selective for Abcg2, while HSCs also express other transporters such as Abcb1a (which is only weakly sensitive to Fumitremorgin C)19. We have also reported that other mitochondrial dyes, such as TMRM, Nonyl acridine orange, and Mitotracker Orange (MTO) exhibit the same patterns as Mitotracker Green. More importantly, we have observed that the flow cytometric patterns of HSPCs reflect their ΔΨm in addition to mitochondrial mass11.
The intake of TMRM dye strictly depends on the negative charge of mitochondria, but the resulting accumulation of dye is in constant balance between its intake and clearance by efflux pumps20. The difference in xenobiotic efflux pump expression between HSCs and mature cell populations affects this balance and can lead to biased results. The use of dedicated inhibitors such as Verapamil should be considered in the analysis of ΔΨm by potentiometric dyes. Here we describe a modified protocol for accurate ΔΨm measurement by TMRM-based flow cytometry which corrects for xenobiotic transporter activity through the use of dedicated inhibitors.
All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) of the Albert Einstein College of Medicine.
1. Preparation of Solutions
2. Bone Marrow Isolation
3. Immunostaining for Detection of HSC
4. TMRM Staining
5. Acquisition by Flow Cytometer
The protocol described above enables the easy isolation of BM-MNCs from a mouse model. Figure 1 summarizes the main steps of the protocol: bone isolation, flushing out of the bone marrow, red blood cell lysis, and antibody staining followed by TMRM staining to measure mitochondrial membrane potential in a specific hematopoietic population.
BM-MNCs contain several cell populations, including HSCs. The antibody cocktails used in this protocol are well-established in...
Mitochondrial membrane potential measurement is a cornerstone of the analysis and assessment of mitochondria, which are critical to the metabolic state of the cell. Here, we describe a protocol for the analysis of ΔΨm by TMRM staining. TMRM is a cell-permeant fluorescent dye which accumulates in active mitochondria due to ΔΨm, and its respective levels remain in equilibrium between the extracellular, cytoplasmic and mitochondrial compartments10. This protocol can be adapted for...
The authors have nothing to disclose.
The authors thank all members of the Ito laboratory, especially K Ito and H Sato, and the Einstein Stem Cell Institute for comments and the Einstein Flow Cytometry and Analytical Imaging core facilities (funded by National Cancer Institute grant P30 CA013330) for help carrying out the experiments. K.I. is supported by grants from the National Institutes of Health (R01DK98263, R01DK115577, and R01DK100689) and the New York State Department of Health as Core Director of Einstein Single-Cell Genomics/Epigenomics (C029154). K.I. Ito is a Research Scholar of the Leukemia and Lymphoma Society.
Name | Company | Catalog Number | Comments |
ACK lysing buffer | Life Technologies | A1049201 | |
B220-biotin | BD Bioscience | 553086 | |
CD3e-biotin | Life Technologies | 13-0031-85 | |
CD4-biotin | Fischer Scientific | BDB553782 | |
CD8-biotin | Life Technologies | 13-0081-85 | |
CD11b-biotin | BD Bioscience | 553309 | |
CD19-biotin | BD Bioscience | 553784 | |
CD34-FITC | eBioscience | 11-0341-85 | |
CD48-APC | eBioscience | 17-0481-82 | |
CD135-biotin | eBioscience | 13-1351-82 | |
CD150-PerCP/Cy5.5 | Biolegend | 115922 | |
c-kit-APC/Cy7 | Biolegend | 105826 | |
Cyclosporin H | Millipore Sigma | SML1575-1MG | |
DAPI solution (1 mg/mL) | Life Technologies | 62248 | |
Fetal Bovine Serum (FBS) | Denville | FB5001-H | |
FCCP | Millipore Sigma | C2920-10MG | |
Gr1-biotin | Biolegend | 108404 | |
IgM-biotin | Life Technologies | 13-5790-85 | |
Il7Rα-biotin | eBioscience | 13-1271-85 | |
Nk1.1-biotin | Fischer Scientific | BDB553163 | |
Phosphate buffered saline (PBS) | Life Technologies | 10010023 | |
Sca-1-PE/Cy7 | eBioscience | 25-5981-81 | |
SCF murine | PEPROTECH | 250-03-10UG | |
StemSpan SFEM medium | STEMCELL technologies | 9605 | |
Streptavidin-Pacific Blue | eBioscience | 48-4317-82 | |
Ter119-biotin | Fischer Scientific | BDB553672 | |
TMRM | Millipore Sigma | T5428-25MG | |
TPO | PEPROTECH | 315-14-10UG | |
Verapamil hydrochloride | Millipore Sigma | V4629-1G |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone