Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Accurate quantification of phosphorus (P) desorption potential in saturated soils and sediments is important for P modeling and transport mitigation efforts. To better account for in situ soil-water redox dynamics and P mobilization under prolonged saturation, a simple approach was developed based on repeated sampling of laboratory microcosms.
Phosphorus (P) is a critical limiting nutrient in agroecosystems requiring careful management to reduce transport risk to aquatic environments. Routine laboratory measures of P bioavailability are based on chemical extractions performed on dried samples under oxidizing conditions. While useful, these tests are limited with respect to characterizing P release under prolonged water saturation. Labile orthophosphate bound to oxidized iron and other metals can rapidly desorb to solution in reducing environments, increasing P mobilization risk to surface runoff and groundwater. To better quantify P desorption potential and mobility during extended saturation, a laboratory microcosm method was developed based on repeated sampling of porewater and overlying floodwater over time. The method is useful for quantifying P release potential from soils and sediments varying in physicochemical properties and can improve site-specific P mitigation efforts by better characterizing P release risk in hydrologically active areas. Advantages of the method include its ability to simulate in situ dynamics, simplicity, low cost, and flexibility.
Phosphorus (P) is a critical limiting nutrient for both crop and aquatic biomass productivity. Surface water hydrology is a main driver of P fate and transport, as it controls the physical transport of sediment and P while also affecting remobilization potential during runoff and flooding/ponding events. Various laboratory-based extraction methods are typically used to estimate P release at the field scale under oxidizing conditions. While different mechanisms can contribute to P release, reductive dissolution of iron-phosphates is a well-established reaction mechanism that can lead to large orthophosphate-P fluxes to water1,2,3,4. In a review of mechanisms controlling P biogeochemistry in wetlands, redox status was hypothesized to be the main variable controlling P release to soils and shallow groundwater5. As such, traditional P tests may not be reliable predictors of P release under prolonged saturation.
Given the importance of water residence time and redox status on P fate and transport, laboratory approaches designed to better simulate in situ conditions could lead to improved P transport risk indices for agricultural and wetland ecosystems subject to variable saturation. Since orthophosphate is immediately bioavailable, the rate and extent of desorption during saturation can be used as an index of nonpoint source P pollution risk. Our method was designed to quantify P desorption to porewater (PW) and mobilization to overlying floodwater (FW), a typical condition in areas with variable source area hydrology (e.g., flooded agricultural fields, wetlands, drainage ditches, and riparian/near-stream zones). The method was originally developed to characterize P release potential in seasonally flooded soils from northern New York (USA) and recently applied to quantify P desorption potential of riparian soils from northwestern Vermont’s Lake Champlain Basin6. Here, we provide a protocol for the laboratory microcosm method and highlight results from a recently published study demonstrating its ability to quantify P desorption potential. We also demonstrate the relationship between P release potential and the reliability of routine soil tests (labile extractable P, pH) to predict release across sites.
Carrying out the method requires access to an analytical laboratory with adequate climate control, ventilation, water, and a proper acid waste disposal system. The method presumes access to routine chemical reagents and laboratory equipment (sinks, hoods, glassware, etc.). Beyond routine laboratory needs, a membrane filtration (≤ 0.45 µm) system is required and a UV spectrophotometer to measure P. A pH meter or multiparameter water quality probe are also recommended but not required. Laboratory temperature is an important factor and should be kept constant unless temperature itself is being investigated as an experimental factor (20 °C is recommended). Unhindered access to an adequate analytical laboratory with proper equipment is a prerequisite to perform the method properly and generate meaningful results.
1. Sample collection
2. Microcosm construction
3. Conducting a phosphorus release trial
Results from a recent study focused on P release potential of riparian areas are highlighted to demonstrate the method’s ability to characterize site-level P release dynamics6. While some soils showed minimal changes in SRP over time, others had large increases in PW- and FW-SRP concentrations (Figure 1). Two sites with contrasting trends are shown in Figure 1. Soil 7 is a riparian site with low soil pH and characterized by nearly c...
A main technical advantage of the microcosm approach is its ability to simulate in-situ conditions whereby saturated soil or sediment is immediately overlain by FW that may substantially differ in redox and P status. Landscapes with variable source area hydrology such as drainage ditches, flooded cropland, wetlands, and riparian/near-stream zones are all examples of where reduced PW is periodically overlain by more oxidized water with lower Pi concentrations. These redox gradients can strongly affect Pi sorption...
The authors declare that this work was conducted in the absence of any commercial or financial relationships that could be interpreted as a potential conflict of interest.
Funding was made available by the Vermont Water Resources and Lake Studies Center through an agreement with the U.S. Geological Survey. Conclusions and opinions are those of the authors and not the Vermont Water Resources and Lake Studies Center or the USGS.
Name | Company | Catalog Number | Comments |
1.25 cm plastic hose barbs | numerous | NA | |
Chemical reagents for phosphorus determination | numerous | NA | P analysis capability is assumed; refer to cited references for details on method |
Chordless or electric drill with 1.25 cm bit | numerous | NA | |
Graduated plastic beakers (1L) | numerous | NA | |
Laboratory with fume hoods, temperature control, and acid waste disposal system | NA | NA | |
Nylon mesh filter screen (100um) | numerous | NA | |
Silicone | numerous | NA | |
UV Spectrophotometer | numerous | NA |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone