Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, we describe a simple and inexpensive method that allows the quantification of adhesive tumor cells to lymph node (LN) cryosections. LN-adherent tumor cells are readily identified by light microscopy and confirmed by a fluorescence-based method, giving an adhesion index that reveals the tumor cell-binding affinity to LN parenchyma.
Tumor-draining lymph nodes (LNs) are not merely filters of tumor-produced waste. They are one of the most common regional sites of provisional residence of disseminated tumor cells in patients with different types of cancer. The detection of these LN-residing tumor cells is an important biomarker associated with poor prognosis and adjuvant therapy decisions. Recent mouse models have indicated that LN-residing tumor cells could be a substantial source of malignant cells for distant metastases. The ability to quantify the adhesivity of tumor cells to LN parenchyma is a critical gauge in experimental research that focuses on the identification of genes or signaling pathways relevant for lymphatic/metastatic dissemination. Because LNs are complex 3D structures with a variety of appearances and compositions in tissue sections depending on the plane of section, their matrices are difficult to replicate experimentally in vitro in a fully controlled way. Here, we describe a simple and inexpensive method that allows the quantification of adhesive tumor cells to LN cryosections. Using serial sections of the same LN, we adapt the classic method developed by Brodt to use nonradioactive labels and directly count the number of adhering tumor cells per LN surface area. LN-adherent tumor cells are readily identified by light microscopy and confirmed by a fluorescence-based method, giving an adhesion index that reveals the cell-binding affinity to LN parenchyma, which is suggestive evidence of molecular alterations in the affinity binding of integrins to their correlate LN-ligands.
Cancer metastasis is the main reason for treatment failure and the dominant life-threatening aspect of cancer. As postulated 130 years ago, the metastatic spread results when an elite of disseminated tumor cells (DTCs, the "seeds") acquire specific biological abilities that allow them to evade primary sites and establish malignant growth at distant sites (the "soil")1. Recently, several novel concepts regarding the "seed and soil" relations have emerged, such as the induction of premetastatic niches (conceptualized as a "fertile soil" needed for "seeds" to thrive), self-seeding of primary tumors by DTCs, "seed" dormancy at secondary organs and the parallel progression model of metastasis2.
For most solid malignancies, DTCs can reside and be detected in many mesenchymal organs, such as bone marrow and lymph nodes (LNs) in patients with or without evidence of clinical metastasis. Because tumor-draining LNs are the first location of the regional spread of DTCs, LN status is an important prognostic indicator and is often associated with adjuvant therapy decisions3. For some tumor types, the correlation between LN status and worse outcomes is strong, including head and neck4,5, breast6, prostate7, lung8, gastric9, colorectal10,11 and thyroid cancers12.
LNs are small ovoid organs of the lymphatic system, that are covered with reticular cells and enclosed with lymphatic vessels. These organs are absolutely necessary for the functioning of the immune system13. LNs act as attractant platforms for immune circulating cells, bringing the lymphocytes and antigen-presenting cells together14. However, LNs also attract circulating tumor cells. Over decades, LNs were pictured as passive routes of transportation for metastatic tumor cells. However, recent studies have indicated that tumor cells may also be guided towards LNs by chemotactic (chemokines) and/or haptotactic (extracellular matrix elements) cues secreted by the lymphatic endothelium15. As examples, overexpression of the CCR7 receptor in tumor cells facilitates the guidance of metastatic melanoma cells towards tumor-draining LNs16. In addition, extracellular LN proteins provide an adhesive scaffold for the recruitment and survival of circulating tumor cells17. In fact, tumor-draining LNs provide fertile soil for the seeding of DTCs, which can be maintained in proliferative or dormant states by specific LN microenvironmental signals18. The final fate of these LN-residing DTCs is controversial; some works suggest that these cells are passive indicators of metastatic progression19, while others propose that they are more likely founders of resistance (by self-seeding primary sites) and/or act as cellular reservoirs for metastases (spreading "seeds" for tertiary cancer growth)20,21. Recently, using preclinical models, it has been demonstrated that a fraction of these LN-residing DTCs actively invaded blood vessels, entered into the blood circulation and colonized the lungs21.
Considering that the presence of cancer cells in LNs is a marker for cancer aggressiveness and invasiveness, in this study, we optimized a classic method developed by Brodt22 to quantitatively measure tumor cell adhesion to LNs in vitro. The use of a fluorescence-based assay allowed us to develop a low-cost, rapid, sensitive and environmentally friendly (nonradioactive) protocol for the detection of adhesive alterations between tumor cells and LN cryosections. Using the MCF-7 breast cancer cells expressing different levels of NDRG4 gene expression and rat LN frozen sections to exemplify the method, we showed that this protocol allowed a good correlation between tumor cell adhesion to LNs in vitro and LN metastasis observed in breast cancer patients24.
Access restricted. Please log in or start a trial to view this content.
LNs were recovered from fresh carcasses of healthy adult Wistar rats sacrificed by cervical dislocation. We followed the NIH Guidelines for Pain and Distress in Laboratory Animals and all procedures were approved by the Ethics Committee and Animal Research of the Research and Education Institute of the Sírio-Libanês hospital (CEUA P 2016-04).
NOTE: All fresh frozen tissues are considered biohazardous and should be handled using appropriate biosafety precautions.
1. Lymphadenectomy and Cryosectioning
2. Cellular Labeling with Fluorescent Dyes
NOTE: Fluorescent dyes are widely used in cell biology. We prefer to use the long-chain dialkylcarbocyanines labeling (DiI(C18), excitation 549 nm, Emission 565 nm) because they are bright, stable and can be added directly to culture media, does not affecting cell viability or cell adhesive properties25,26.
3. Precoating Dishes with Poly-L-lysine Solution or BSA as a Seeding Control (Optional)
NOTE: We used cell culture dishes precoated with PLL as positive loading-control surfaces to ensure that different experimental groups of tumor cells were seeded at the same number, as well as BSA-coated surfaces as negative controls.
4. Seeding Fluorescent-labeled Tumor Cells on LN Cryosections or PLL/BSA-coated Wells
NOTE: As experimental controls, we used (1) cell culture dishes precoated with PLL or BSA and (2) consecutive sections of the same LN per experiment (see this detail in Figure 2D), where the latter will minimize regional variations in extracellular matrix (ECM) composition of each LN section, which in turn can dictate the cell adhesion rate. For the following tumor cell adhesion assay, select high quality and sequential LN cryosections.
5. Manual Quantification of the Adhesive Index
NOTE: The adhesive index (i.e., tumor cells/LN mm2) was achieved using a 10X objective and manually counting the number of tumor cells, readily identified by light microscopy and confirmed by a fluorescence microscopy (Figure 2D), per lymph node areas of several independent fields (obtained using National Institute of Health's ImageJ/FIJI software).
Access restricted. Please log in or start a trial to view this content.
We illustrate the assay by evaluating the LN adhesive potential of red fluorescent MCF-7 breast cancer cells expressing different levels of the NDRG4 gene (referred to as NDRG4-positive and NDRG4-negative cells), a negative modulator of beta1-integrin clustering at the cell surface24, by examining the fractions of rat LN-adherent tumor cells. Examples of the raw images of this protocol are shown in Figure 2. As observed in
Access restricted. Please log in or start a trial to view this content.
Lymphatic system dissemination of cancer cells requires a variety of complex cell-driven events. They initiate with cell detachment from primary tumor and the remodeling of the extracellular matrix (ECM) architecture, and are supported by persistent chemotaxis and active migration through the afferent lymphatics en route to the sentinel LNs. If cancer cells adhere and survive in LNs, they can easily spread to other secondary organs. Here we describe an easy method for rapid and low-cost functional analysis of specific ad...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
We thank Dr. Rosana De Lima Pagano and Ana Carolina Pinheiro Campos for technical assistance. This work was supported by grants from: FAPESP - São Paulo Research Foundation (2016/07463-4) and Ludwig Institute for Cancer Research (LICR).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
15 mL Conical Tubes | Corning | 352096 | |
2-propanol | Merck | 109634 | |
Benchtop Laminar Flow | Esco Cell Culture | ||
Bin for Disc | Leica | 14020139126 | |
Bovine Serum Albumin | Sigma-Aldrich | A9647-100 | |
Cell culture flask T-25 cm2 | Corning | 430372 | |
Cryostat | Leica | CM1860 UV | |
Cryostat-Brush with magnet | Leica | 14018340426 | |
DiIC18 Cell Traker Dye | Molecular Probes | V-22885 | |
Fetal Bovine Serum (FBS) | Life Technologies | 12657-029 | |
Fluorescence microscope | Nikon Eclipse 80 | ||
Forma Series II CO2 incubator | Thermo Scientific | ||
Formaldehyde | Sigma-Aldrich | 252549 | |
High Profile Disposable Razor | Leica | 14035838926 | |
Incubation Cube (IHC) | KASVI | K560030 | |
Inverted microscope | Olympus | CKX31 | |
Isofluran 100 mL | Cristália | ||
Liquid Bloquer Super Pap Pen | Abcam, Life Science Reagents | ab2601 | |
Optimal Cutting Temperature "OCT" compound | Sakura | 4583 | |
Phosphate-buffered Saline (PBS) | Life Technologies | 70011-044 | |
Poly-L-lysine | Sigma-Aldrich | P8920 | |
RPMI | Gibco | 31800-022 | |
Serological Pipettes 1 mL | Jet Biofil | GSP010001 | |
Serological Pipettes 10 mL | Jet Biofil | GSP010010 | |
Serological Pipettes 2 mL | Jet Biofil | GSP010002 | |
Serological Pipettes 5 mL | Jet Biofil | GSP010005 | |
Serological Pipettes 50 mL | Jet Biofil | GSP010050 | |
Serological Pipettor Easypet 3 | Eppendorf | ||
Tissue-Tek cryomold | Sakura | 4557 | |
Trypan Blue 0.4% | Invitrogen | T10282 | |
Trypsin | Instituto Adolfo Lutz | ATV |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone