Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

The preparation of SNS pincer cobalt(II) model complexes of liver alcohol dehydrogenase is presented here. The complexes can be prepared by reacting the ligand precursor with CoCl2·6H2O and can then be recrystallized by allowing diethyl ether to slowly diffuse into an acetonitrile solution that contains the cobalt complex.

Streszczenie

Chemical model complexes are prepared to represent the active site of an enzyme. In this protocol, a family of tridentate pincer ligand precursors (each possessing two sulfur and one nitrogen donor atom functionalities (SNS) and based on bis-imidazole or bis-triazole compounds) are metallated with CoCl2·6H2O to afford tridentate SNS pincer cobalt(II) complexes. Preparation of the cobalt(II) model complexes for liver alcohol dehydrogenase is facile. Based on a quick color change upon adding the CoCl2·6H2O to acetonitrile solution that contains the ligand precursor, the complex forms rapidly. Formation of the metal complex is complete after allowing the solution to reflux overnight. These cobalt(II) complexes serve as models for the zinc active site in liver alcohol dehydrogenase (LADH). The complexes are characterized using single crystal X-ray diffraction, electrospray mass spectrometry, ultra-violet visible spectroscopy, and elemental analysis. To accurately determine the structure of the complex, its single crystal structure must be determined. Single crystals of the complexes that are suitable for X-ray diffraction are then grown via slow vapor diffusion of diethyl ether into an acetonitrile solution that contains the cobalt(II) complex. For high quality crystals, recrystallization typically takes place over a 1 week period, or longer. The method can be applied to the preparation of other model coordination complexes and can be used in undergraduate teaching laboratories. Finally, it is believed that others may find this recrystallization method to obtain single crystals beneficial to their research.

Wprowadzenie

The purpose of the presented method is to prepare small-molecule analogs of LADH to further understand the catalytic activity of metalloenzymes. LADH is a dimeric enzyme that contains a cofactor-binding domain and zinc(II) metal-containing catalytic domain1. LADH, in the presence of co-factor NADH, can reduce ketones and aldehydes to their respective alcohol derivatives2. In the presence of NAD+, LADH can perform reverse catalysis of oxidation of alcohols to ketones and aldehydes2. The crystal structure of LADH’s active site shows that its zinc(II) metal center is bound to one nitrogen atom, provided by a histidine side chain and two sulfur atoms and offered by two cysteine ligands3. Further research has shown that the zinc metal center is ligated with a labile water molecule, resulting in pseudo-tetrahedral geometry around the metal center4.

We have previously reported and utilized SNS pincer ligand precursors as well as metallated the ligand precursors with ZnCl2 to form Zn(II) complexes that contain the tridentate ligand precursor5,6,7. These ligand precursors are shown in Figure 1. These zinc(II) complexes exhibited activity for the stoichiometric reduction of electron-poor aldehydes and are thus model complexes for LADH. Subsequently, the synthesis and characterization of a series of copper(I) and copper(II) complexes that contain SNS ligand precursors have been reported8,9,10.

Although LADH is a zinc(II) enzyme, we are interested in preparing cobalt(II) model complexes of LADH in order to obtain more spectroscopic information about the cobalt(II) analogs of LADH. The cobalt(II) complexes are colored, whereas the zinc(II) complexes are off-white. Since the cobalt(II) complexes are colored, ultraviolet visible spectra of the complexes can be obtained, in which information about the strength of the ligand field in cobalt(II) complexes can also be gathered. By using information from Gaussian calculations and the experimentally obtained ultra-violet visible spectra, information about the strength of the ligand field can be deduced. Cobalt(II) is a good substitute for zinc(II), since both ions have similar ionic radii and similar Lewis acidities11,12.

The presented method involves synthesizing and characterizing model complexes to attempt to mimic the natural catalytic behavior of LADH5,6. We have previously metallated a family of ligand precursors with ZnCl2 to form zinc(II) model complexes of LADH, which modeled the structure and reactivity of the zinc active site in LADH4. Through multiple experiments, these pincer ligands have proven to be robust under different environmental conditions and have remained stable with a diverse collection of attached R-groups.5,6

Tridentate ligands are preferable compared to monodentate ligands, because they have been found to be more successful with metalation due to the strong chelate effects of tridentate ligands. This observation is due to a more favored entropy of tridentate pincer ligand formation in comparison to a monodentate ligand13. Furthermore, tridentate pincer ligands are likely to prevent dimerization of the metal complexes, which is favored because dimerization is likely to slow catalytic activity of a complex14. Thus, using tridentate pincer ligands has been proven successful in organometallic chemistry in the preparation of catalytic active and robust complexes. SNS pincer complexes have been less studied than other pincer systems, as pincer complexes usually contain second and third row transition metals15.

This research on metalloenzymes can help further the understanding of their enzymatic activity, which can be applied to other areas in biology. This method of synthesizing model complexes compared to the alternative method (synthesizing the entire protein of LADH) is favorable for a number of reasons. The first advantage is that model complexes are low in molecular mass and are still capable of accurately representing catalytic activity and environmental conditions of the natural enzyme’s active site. Second, model complexes are simpler to work with and produce reliable and relatable data.

This manuscript describes the synthetic preparation and characterization of two cobalt(II) pincer model complexes of LADH. Both complexes feature a pincer ligand that contains sulfur, nitrogen, and sulfur donor atoms. The first complex (4) is based on an imidazole precursor, and the second (5) is based on a triazole precursor. The complexes show reactivity for the stoichiometry reduction of electron poor aldehydes in the presence of a hydrogen donor. These reactivity results will be reported in a subsequent manuscript.

Protokół

1. Synthesis of chloro-(n3-S,S,N)-[2,6-bis(N-isopropyl-N’-methyleneimidazole-2-thione)pyridine]cobalt(II)tetrachlorocobaltate [4]

  1. To prepare complex 4, add 0.121 g (3.12 x 10-4 mol) of 2,6-bis(N-isopropyl-N’-methyleneimidazole-2-thione)pyridine (C19H25N5S2)6 to 15 mL of acetonitrile in a 100 mL round bottom flask. Next, to this solution, add 0.0851 g (3.58 x 10-4 mol) of cobalt chloride(II) hexahydrate (CoCl2·6H2O). The reaction solution should change color from light yellow to emerald green immediately after the cobalt(II) chloride hexahydrate is added.
  2. Add a stir bar to the flask. Reflux and stir the reaction for 20 h to ensure complete reaction. Remove the solvent using a rotovap under reduced pressure.

2. Recrystallization of chloro-(n3-S,S,N)-[2,6-bis(N-isopropyl-N’-methyleneimidazole-2-thione)pyridine]cobalt(II)tetrachlorocobaltate [4] by slow vapor diffusion

  1. Dissolve the solute in acetonitrile (7.5 mL), filter the solution, and place the solution evenly in 1 dram vials. Fill each vial with 1.5 mL of acetonitrile solution.
    1. Add cotton to cap the vials, which allows for slow vapor diffusion. Fit the cotton snugly in the opening at the top of the vial.
    2. Place the vials in a 240 mL jar containing 50 mL of diethyl ether. Close the jar with a cap.
    3. Allow the crystals to grow over a period of 1 week.
      NOTE: Recrystallization may take longer than 1 day.

3. Synthesis of chloro-(n3-S,S,N)-[2,6-bis(N-isopropyl-N’-methylenetriazole-2-thione)pyridine]cobalt(II)tetrachlorocobaltate [5]

  1. To prepare complex 5, add 0.183 g (4.70 x 10-4 mol) of 2,6-bis(N-isopropyl-N’-methylenetriazole-2-thione)pyridine (C17H23N7S2)6 to 15 mL of acetonitrile in a 100 mL round bottom flask. To this solution, add 0.223 g (9.37 x 10-4 mol) of cobalt chloride hexahydrate (CoCl2·6H2O). The reaction solution should change color from light yellow to royal blue immediately after the cobalt(II) chloride hexahydrate is added.
    1. Add a stir bar to the flask. Reflux and stir the reaction for 20 h to ensure complete reaction. Remove the solvent using a rotovap under reduced pressure.

4. Recrystallization of chloro-(n3-S,S,N)-[2,6-bis(N-isopropyl-N’-methylenetriazole-2-thione)pyridine]cobalt(II)tetrachlorocobaltate [5] by slow vapor diffusion

  1. Dissolve the solute in acetonitrile (9.0 mL), filter the solution, and place the solution evenly in 1 dram vials. Fill each vial with 1.5 mL of acetonitrile solution.
    1. Add cotton to cap the vials, which allows for slow vapor diffusion. Fit the cotton snugly in the opening at the top of the vial.
    2. Place the vials in a jar containing 50 mL of diethyl ether. Close the vial with a cap.
    3. Allow the crystals to grow over a period of 1 week.
      NOTE: Recrystallization may take longer than 1 day.

5. X-ray crystallography

  1. Mount a crystal of 4 on a nylon loop. Collect the data on a Rigaku Oxford Diffraction diffractometer. Here, X-ray diffraction data is collected at 173(2) K. Solve the crystal structure using Olex216 and ShelXT17 structure solution programs using direct methods. Refine the structure with the ShelXL18 refinement package using least squares minimization.
  2. Mount a crystal of 5 on a nylon loop. Collect the X-ray diffraction data on a Rigaku Oxford Diffraction diffractometer. Here, X-ray diffraction data is collected at 173(2) K. Solve the crystal structure using Olex216 and ShelXT17 structure solution programs using direct methods. Refine the structure with the ShelXL18 refinement package using least squares minimization.

Wyniki

Synthesis
The syntheses of complexes 4 and 5 were successfully carried out by reacting an acetonitrile solution containing a bis-thione ligand precursor with cobalt (II) chloride hexahydrate (Figure 2). This reaction occurred at a reflux temperature in the presence of air. In general, complexes 4 and 5 were observed to be soluble in acetonitrile, dimethyl sulfoxide, dichloromethane, and methanol. Compl...

Dyskusje

The preparation of complexes 4 and 5 is facile. The key step is to add the solid CoCl2·6H2O to an acetonitrile solution that contains the respective ligand precursor. The solution turns dark green within seconds after the addition of CoCl2·6H2O to form complex 4. The solution turns bright blue after the addition of CoCl2·6H2O to form complex 5. To ensure complete reaction, t...

Ujawnienia

The authors have nothing to disclose.

Podziękowania

John Miecznikowski received financial support from the following for this project: the Connecticut NASA Space Grant Alliance (Award Number P-1168), the Fairfield University Science Institute, College of Arts and Sciences Publication Fund, Fairfield University Faculty Summer Research Stipend, and National Science Foundation-Major Research Instrumentation Program (Grant Number CHE-1827854) for funds to acquire a 400 MHz NMR spectrometer. He also thanks Terence Wu (Yale University) for assistance in acquiring electrospray mass spectra. Jerry Jasinski acknowledges the National Science Foundation-Major Research Instrumentation Program (Grant Number CHE-1039027) for funds to purchase an X-ray diffractometer. Sheila Bonitatibus, Emilse Almanza, Rami Kharbouch, and Samantha Zygmont acknowledge the Hardiman Scholars Program for providing their summer research stipend.

Materiały

NameCompanyCatalog NumberComments
100 mL Round Bottomed FlaskChem GlassCG150691100mL Single Neck Round Bottomed Flask, 19/22 Outer Joint
AcetonitrileFisherHB9823-4HPLC Grade
Chiller for roto-vapLaudaL000638Alpha RA 8
Cobalt Chloride hexahydrateAcros OrganicsAC423571000Acros Organics
Diethyl EtherFisherE-138-1Diethyl Ether Anhydorus
graduated cylinderFisherS6345625 mL graduated cylinder
hotplateFisher11-100-49SHIsotemp Basic Stirring Hotplate
jarsFisher05-719-481250 mL jars
Ligand----------Synthezied previously by Professor Miecznikowski
medium cotton ballsFisher22-456-80medium cotton balls
one dram vialsFisher03-339one dram vials with TFE Lined Cap
pipetFisher13-678-20B5.75 inch pipets
pipet bulbsFisher03-448-21Fisher Brand Latex Bulb for pipet
recrystallizing dish for sand bathFisher08-741 D325 mL recrystallizing dish for sand bath
reflux condensorChem GlassCG-1218-A-22Condenser with 19/22 inner joint
RotovapHeidolph Collegiate36000090Brinkmann; Heidolph Collegiate Rotary Evaporator with Heidolph WB eco bath Heidolph Rotary Evaporator
sea sand for sandbathAcros Organics612355000washed sea sand for sand bath
Stir barFisher07-910-23Egg-Shaped Magnetic Stir Bar
Vacum greaseFisher14-635-5DDow Corning High Vacuum Grease
vacuum pump for rotovapHeidolph Collegiate36302830Heidolph Rotovac Valve Control

Odniesienia

  1. Holm, R. H., Kennepohl, P., Solomon, E. I. Structural and Functional Aspects of Metal Sites in Biology. Chemical Reviews. 96 (7), 2239-2314 (1996).
  2. Ibers, J. A., Holm, R. H. Modeling coordination sites in metallobiomolecules. Science. 209 (4453), 223-235 (1980).
  3. Kannan, K. K., et al. Crystal structure of human erythrocyte carbonic anhydrase B. Three-dimensional structure at a nominal 2.2-A resolution. Proceedings of the National Academy of Sciences USA. 72 (1), 51-55 (1975).
  4. Eklund, H., Brändén, C. I. Structural differences between apo- and holoenzyme of horse liver alcohol dehydrogenase. Journal of Biological Chemistry. 254, 3458-3461 (1979).
  5. Miecznikowski, J. R., et al. Syntheses, Characterization, Density Functional Theory Calculations and Activity of Tridentate SNS Zinc Pincer Complexes. Inorganica Chimica Acta. 376, 515-524 (2011).
  6. Miecznikowski, J. R., et al. Syntheses, Characterization, Density Functional Theory Calculations, and Activity of Tridentate SNS Zinc Pincer Complexes Based on Bis-Imidazole or Bis-Triazole Precursors. Inorganica Chimica Acta. 387, 25-36 (2012).
  7. Sunderland, J. R., et al. Investigation of liver alcohol dehydrogenase catalysis using an NADH biomimetic and comparison with a synthetic zinc model complex. Polyhedron. 114, 145-151 (2016).
  8. Miecznikowski, J. R., et al. Synthesis and characterization of three- and five-coordinate copper(II) complexes based SNS ligand precursors. Polyhedron. 80, 157-165 (2014).
  9. Miecznikowski, J. R., et al. Synthesis, Characterization, and Computational Study of Three-Coordinate SNS Copper(I) Complexes based on Bis-Thione Ligand Precursors. Journal of Coordination Chemistry. 67, 29-44 (2014).
  10. Lynn, M. A., et al. Copper(I) SNS Pincer Complexes: Impact of Ligand Design and Solvent Coordination on Conformer Interconversion from Spectroscopic and Computational Studies. Inorganica Chimica Acta. 495, (2019).
  11. . Web Elements Available from: https://www.webelements.com/zinc/atom_sizes.html (2019)
  12. . Web Elements Available from: https://www.webelements.com/cobalt/atom_sizes.html (2019)
  13. Caballero, A., Díez-Barra, E., Jalón, F. A., Merino, S., Tejeda, J. 1,1'-(pyridine-2,6-diyl)bis(3-benzyl-2,3-dihydro-1H-imidazol-2-ylidine), a new multidentate N-heterocyclic bis-carbene and its silver(I) complex derivative. Journal of Organometallic Chemistry. 617-618, 395-398 (2001).
  14. Albrecht, M., van Koten, G. Platinum Group Organometallics Based on "Pincer" Complexes: Sensors, Switches, and Catalysis. Angewandte Chemie International Edition. 40 (20), 3750-3781 (2001).
  15. Peris, E., Crabtree, R. H. Key factors in pincer ligand design. Chemistry Society Reviews. 47, 1959-1968 (2018).
  16. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. A complete structure, solution, refinement, and analysis program. Journal of Applied Crystallography. 42, 339-341 (2009).
  17. Sheldrick, G. M. Integrated Space Group and Crystal Structure Determination. Acta Crystallography. 71, 3-8 (2015).
  18. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallography. 71, 3-8 (2015).
  19. Pauling, L. Metal-metal bond lengths in complexes of transition metals. Proceedings of the National Academies of the Sciences of the United States of America. 73, 4290-4293 (1976).
  20. Trzhtsinskaya, B. V., Abramova, N. D. Imidazole-2-Thiones: Synthesis, Structure, Properties. Sulfur Reports. 10 (4), 389 (1991).
  21. Schneider, G., Eklund, H., Cedergren-Zeppezauer, E., Zeppezauer, M. Crystal structure of the active site in specifically metal-depleted and cobalt substituted horse liver alcohol dehydrogenase derivatives. Proceedings of the National Academies of the Sciences of the United States of America. 80, 5289-5293 (1983).
  22. Yang, L., Powell, D. R., Houser, R. P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Transactions. , 955-964 (2007).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

SNS Cobalt II PincerLiver Alcohol DehydrogenaseModel ComplexSingle CrystalsCoordination CompoundsAcetonitrileCobalt II Chloride HexahydrateRecrystallizationSolute DissolutionSlow Vapor DiffusionRotovapChemical ReactionCrystal Growth

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone