Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Using multimodal sensors is a promising way to understand the role of social interactions in educational settings. This paper describes a methodology for capturing joint visual attention from colocated dyads using mobile eye-trackers.
With the advent of new technological advances, it is possible to study social interactions at a microlevel with unprecedented accuracy. High frequency sensors, such as eye-trackers, electrodermal activity wristbands, EEG bands, and motion sensors provide observations at the millisecond level. This level of precision allows researchers to collect large datasets on social interactions. In this paper, I discuss how multiple eye-trackers can capture a fundamental construct in social interactions, joint visual attention (JVA). JVA has been studied by developmental psychologists to understand how children acquire language, learning scientists to understand how small groups of learners work together, and social scientists to understand interactions in small teams. This paper describes a methodology for capturing JVA in colocated settings using mobile eye-trackers. It presents some empirical results and discusses implications of capturing microobservations to understand social interactions.
JVA has been extensively studied over the last century, especially by developmental psychologists studying language acquisition. It was quickly established that joint attention is more than just a way to learn words but rather a precursor to children's theories of mind1. Thus, it plays a significant role in many social processes, such as communicating with others, collaborating, and developing empathy. Autistic children, for instance, lack the ability to coordinate their visual attention with their caregivers, which is associated with significant social impairments2. Humans need joint attention to become functional members of society, to coordinate their actions, and to learn from others. From children acquiring their first words, teenagers learning from schoolteachers, students collaborating on projects, and to groups of adults working toward common goals, joint attention is a fundamental mechanism to establish common ground between individuals3. In this paper, I focus on the study of JVA in educational research. Understanding how joint attention unfolds over time is of primary importance for the study of collaborative learning processes. As such, it plays a predominant role in socioconstructivist settings.
The exact definition of joint attention is still debated4. This paper is concerned with a subconstruct of joint attention (JA), namely JVA. JVA happens when two subjects are looking at the same place at the same time. It should be noted that JVA does not provide any information about other important constructs of interest in the study of JA, such as monitoring common, mutual, and shared attention, or more generally, awareness of the cognition of another group member. This paper operationalizes and simplifies JVA by combining the eye-tracking data from two participants and analyzing the frequency in which they align their gazes. For a more comprehensive discussion, the interested reader can learn more about the study of the JA construct in Siposovaet al.4.
Over the past decade, technological advances have radically transformed research on JVA. The main paradigm shift was to use multiple eye-trackers to obtain quantitative measures of attentional alignments, as opposed to qualitatively analyzing video recordings in a laboratory or ecological setting. This development has allowed researchers to collect precise, detailed information about dyads' visual coordination. Additionally, eye-trackers are becoming more affordable: until recently, their use was reserved to academic settings or large corporations. It is now possible to purchase inexpensive eye-trackers that generate reliable datasets. Finally, the progressive inclusion of gaze-tracking capabilities into existing devices like high-end laptops and virtual and augmented reality headsets suggests that eye-tracking will soon become ubiquitous.
Because of the popularization of eye-tracking devices, it is important to understand what they can and cannot tell us about social interactions. The methodology presented in this paper marks a first step in this direction. I address two challenges in capturing JVA from multiple eye-trackers: synchronizing the data on 1) the temporal scale, and 2) on the spatial scale. More specifically, this protocol makes use of fiducial markers placed in real-world environments to inform computer vision algorithms where participants are orienting their gaze. This new kind of methodology paves the way to rigorous analysis of human behavior in small groups.
This research protocol complies with the guidelines of Harvard University's human research ethics committee.
1. Participant Screening
2. Preparation for the Experiment
3. Running the experiment
4. Preprocessing the dual eye-tracking data
5. Analyzing the dual eye-tracking data
The methodology presented above was used to study students who were following a vocational training program in logistics (n = 54)12. In this experiment, pairs of students interacted with a Tangible User Interface (TUI) that simulated a small-scale warehouse. The fiducial markers placed on the TUI allowed the research team to remap students' gazes onto a common plane and compute levels of JVA. Findings indicated that groups who had higher levels of JVA tended to do better at the task given to t...
The methodology described in this paper provides a rigorous way to capture JVA in colocated dyads. With the emergence of affordable sensing technology and improved computer vision algorithms, it is now possible to study collaborative interactions with an accuracy that was previously unavailable. This methodology leverages fiducial markers disseminated in the environment and uses homographies as a way to remap participants' gazes onto a common plane. This allows researchers to rigorously study JVA in colocated groups....
The authors declare that they have no competing financial interests.
The development of this methodology was supported by the National Science Foundation (NSF #0835854), the Leading House Technologies for Vocation Education, funded by the Swiss State Secretariat for Education, Research and Innovation, and the Harvard School of Education's Dean Venture Fund.
Name | Company | Catalog Number | Comments |
Tobii Glasses 2 | Tobii | N/A | https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/ |
Fiducial markers | Chili lab – EPFL, Switzerland | N/A | https://github.com/chili-epfl/chilitags |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone