A subscription to JoVE is required to view this content. Sign in or start your free trial.
Using multimodal sensors is a promising way to understand the role of social interactions in educational settings. This paper describes a methodology for capturing joint visual attention from colocated dyads using mobile eye-trackers.
With the advent of new technological advances, it is possible to study social interactions at a microlevel with unprecedented accuracy. High frequency sensors, such as eye-trackers, electrodermal activity wristbands, EEG bands, and motion sensors provide observations at the millisecond level. This level of precision allows researchers to collect large datasets on social interactions. In this paper, I discuss how multiple eye-trackers can capture a fundamental construct in social interactions, joint visual attention (JVA). JVA has been studied by developmental psychologists to understand how children acquire language, learning scientists to understand how small groups of learners work together, and social scientists to understand interactions in small teams. This paper describes a methodology for capturing JVA in colocated settings using mobile eye-trackers. It presents some empirical results and discusses implications of capturing microobservations to understand social interactions.
JVA has been extensively studied over the last century, especially by developmental psychologists studying language acquisition. It was quickly established that joint attention is more than just a way to learn words but rather a precursor to children's theories of mind1. Thus, it plays a significant role in many social processes, such as communicating with others, collaborating, and developing empathy. Autistic children, for instance, lack the ability to coordinate their visual attention with their caregivers, which is associated with significant social impairments2. Humans need joint attention to become functional m....
1. Participant Screening
2. Preparation for the Experiment
The methodology presented above was used to study students who were following a vocational training program in logistics (n = 54)12. In this experiment, pairs of students interacted with a Tangible User Interface (TUI) that simulated a small-scale warehouse. The fiducial markers placed on the TUI allowed the research team to remap students' gazes onto a common plane and compute levels of JVA. Findings indicated that groups who had higher levels of JVA tended to do better at the task given to t.......
The methodology described in this paper provides a rigorous way to capture JVA in colocated dyads. With the emergence of affordable sensing technology and improved computer vision algorithms, it is now possible to study collaborative interactions with an accuracy that was previously unavailable. This methodology leverages fiducial markers disseminated in the environment and uses homographies as a way to remap participants' gazes onto a common plane. This allows researchers to rigorously study JVA in colocated groups........
The development of this methodology was supported by the National Science Foundation (NSF #0835854), the Leading House Technologies for Vocation Education, funded by the Swiss State Secretariat for Education, Research and Innovation, and the Harvard School of Education's Dean Venture Fund.
....Name | Company | Catalog Number | Comments |
Tobii Glasses 2 | Tobii | N/A | https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/ |
Fiducial markers | Chili lab – EPFL, Switzerland | N/A | https://github.com/chili-epfl/chilitags |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved