Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Precise determination of protein-binding locations across the genome is important for understanding gene regulation. Here we describe a genomic mapping method that treats chromatin-immunoprecipitated DNA with exonuclease digestion (ChIP-exo) followed by high-throughput sequencing. This method detects protein-DNA interactions with near base-pair mapping resolution and high signal-to-noise ratio in mammalian neurons.
Identification of specific protein-DNA interactions on the genome is important for understanding gene regulation. Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) is widely used to identify genome-wide binding locations of DNA-binding proteins. However, the ChIP-seq method is limited by its heterogeneity in length of sonicated DNA fragments and non-specific background DNA, resulting in low mapping resolution and uncertainty in DNA-binding sites. To overcome these limitations, the combination of ChIP with exonuclease digestion (ChIP-exo) utilizes 5’ to 3’ exonuclease digestion to trim the heterogeneously sized immunoprecipitated DNA to the protein-DNA crosslinking site. Exonuclease treatment also eliminates non-specific background DNA. The library-prepared and exonuclease-digested DNA can be sent for high-throughput sequencing. The ChIP-exo method allows for near base-pair mapping resolution with greater detection sensitivity and reduced background signal. An optimized ChIP-exo protocol for mammalian cells and next-generation sequencing is described below.
The locations of protein-DNA interactions provide insight into the mechanisms of gene regulation. Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) has been used for a decade to examine genome-wide protein-DNA interactions in living cells1,2. However, the ChIP-seq method is limited by heterogeneity in DNA fragmentation and unbound DNA contamination that lead to low mapping resolution, false positives, missed calls, and non-specific background signal. The combination of ChIP with exonuclease digestion (ChIP-exo) improves upon the ChIP-seq method by trimming ChIP DNA to the protein-DNA crosslinking points, providing near base-pair resolution and a low background signal3,4,5. The greatly improved mapping resolution and low background provided by ChIP-exo allow accurate and comprehensive protein-DNA binding locations to be determined across the genome. ChIP-exo is able to reveal functionally distinct DNA-binding motifs, cooperative interactions between transcription factors (TF), and multiple protein-DNA crosslinking sites in a certain genomic binding location, not detectable by other genomic mapping methods3,4,6,7.
ChIP-exo was initially used in budding yeast to examine the sequence-specific DNA binding of TFs, to study the precise organization of the transcription pre-initiation complex, and sub-nucleosomal structure of individual histones across the genome4,8,9. Since its introduction in 20114, ChIP-exo has been successfully utilized in many other organisms including bacteria, mice, and human cells7,10,11,12,13,14,15,16,17. In 2016, Rhee et al.14 used ChIP-exo in mammalian neurons for the first time to understand how neuronal gene expression was maintained after the downregulation of programming TF Lhx3, which forms a heterodimer complex with another programming TF Isl1. This study showed that in the absence of Lhx3, Isl1 is recruited to new neuronal enhancers bound by Onecut1 TF to maintain gene expression of neuronal effector genes. In this study, ChIP-exo revealed how multiple TFs dynamically recognize cell type and cell stage-specific DNA regulatory elements in a combinatorial manner at near-nucleotide mapping resolution. Other studies also used the ChIP-exo method to understand the interplay between proteins and DNA in other mammalian cell lines. Han et al.7 used ChIP-exo to examine genome-wide organization of GATA1 and TAL1 TFs in mouse erythroid cells using ChIP-exo. This study found that TAL1 is directly recruited to DNA rather than indirectly through protein-protein interactions with GATA1 throughout erythroid differentiation. Recent studies also used ChIP-exo to profile the genome-wide binding locations of CTCF, RNA Polymerase II, and histone marks to study epigenomic and transcriptional mechanisms in human cell lines18,19.
There are several versions of the ChIP-exo protocol available3,5,20. However, these ChIP-exo protocols are difficult to follow for researches who are not familiar with next-generation sequencing library preparation. An excellent version of the ChIP-exo protocol was published with easy-to-follow instructions and a video21, but contained many enzymatic steps that require a significant amount of time to complete. Here we report a new version of the ChIP-exo protocol containing reduced enzymatic steps and incubation times, and explanations for each enzymatic step21. End repair and dA-tailing reactions are combined in a single step using end prep enzyme. The incubation times for index and universal adapter ligation steps are reduced from 2 h to 15 min using a ligation enhancer. The kinase reaction after the index adapter ligation step described in the previous ChIP-exo protocol is removed. Instead, a phosphate group is added during oligo DNA synthesis to one of the 5’ ends of the index adapter (Table 1), which will be used for the lambda exonuclease digestion step. While the previous ChIP-exo protocol used RecJf exonuclease digestion to eliminate single-stranded DNA contaminants, this digestion step is removed here because it is not critical for the quality of the ChIP-exo library. In addition, to purify reverse-crosslinked DNA after ChIP elution, a magnetic beads purification method is used instead of the phenol:chloroform:isoamyl alcohol (PCIA) extraction method. This reduces the incubation time of DNA extraction. Importantly, it removes the majority of adapter dimers formed during index adapter ligation, which may impact the efficiency of ligation-mediated PCR.
The ChIP-exo protocol presented here is optimized for the detection of precise protein-DNA interactions in mammalian neurons differentiated from mouse embryonic stem (ES) cells. Briefly, harvested and crosslinked neuronal cells are lysed, to allow chromatin to be exposed to sonication, then sonicated so that appropriately sized DNA fragments are obtained (Figure 1). Antibody-coated beads are then used to selectively immunoprecipitate fragmented, soluble chromatin to the protein of interest. While the immunoprecipitated DNA is still on the beads, end-repair, ligation of sequencing adapters, fill-in reaction and 5’ to 3’ lambda exonuclease digestion steps are performed. The exonuclease digestion step is what gives ChIP-exo its ultra-high resolution and high signal-to-noise ratio. Lambda exonuclease trims the immunoprecipitated DNA a few base-pairs (bp) from the crosslinking site, thus causing contaminating DNA to be degraded. The exonuclease-treated ChIP DNA is eluted from the antibody-coated beads, protein-DNA crosslinks are reversed, and proteins are degraded. DNA is extracted and denatured to single-stranded ChIP DNA, followed by primer annealing and extension to make double-stranded DNA (dsDNA). Next, ligation of a universal adapter to the exonuclease-treated ends is performed. The resulting DNA is purified, then PCR amplified, gel purified, and subjected to next-generation sequencing.
The ChIP-exo protocol is longer than the ChIP-seq protocol, but is not very technically challenging. Any successfully immunoprecipitated ChIP DNA can be subjected to ChIP-exo, with several additional enzymatic steps. The notable advantages of ChIP-exo, such as ultra-high mapping resolution, a reduced background signal, and decreased false positive and negatives, regarding genomic binding sites, outweigh the time cost.
NOTE: Autoclaved distilled and deionized water (ddH2O) is recommended for making buffers and reaction master mixes. Sections 1−4 describe cell lysis and sonication, sections 5−7 describe chromatin immunoprecipitation (ChIP), sections 8−11 describe enzymatic reactions on beads, sections 12 and 13 describe ChIP elution and DNA purification, and sections 14−19 describe library preparation.
1. Harvesting and crosslinking cells
2. Cell lysis
NOTE: The following steps in this protocol are for approximately 2 x 107 neuronal cells differentiated from mouse ES cells. To break open cells, lysis buffers containing various detergents will be used. Add 50 µL of 1000x complete protease inhibitor (CPI) stock to 50 mL of buffer just prior to use.
3. Sonicating chromatin
NOTE: Keep samples on ice or at 4 °C during this sonication procedure to reduce crosslink reversal.
4. Checking sonication
5. Antibody incubation with beads
NOTE: The following steps in this protocol are for approximately 2 x 107 neuronal cells differentiated from mouse ES cells. Do not freeze and thaw magnetic beads at any point during the ChIP-exo protocol as the beads may crack causing contamination of the sample or the antibody’s performance may be compromised.
6. Chromatin immunoprecipitation (ChIP)
7. ChIP washes
NOTE: Keep samples on ice or at 4 °C to maintain protein-DNA crosslinking during ChIP washes.
8. End repair and dA-tailing reaction on beads
NOTE: Sonication often generates non-blunt ended dsDNA. An end-repair reaction is required to make blunt-ended DNA prior to the dA-tailing reaction followed by the index adapter ligation step. For sticky end DNA ligation with index adapter DNA, dATP is added to the 3’ end of a blunt, dsDNA fragment by the dA-tailing reaction. End prep reaction mix contains dATP.
9. Index adapter ligation on beads
NOTE: The index adapter has 6−10 bases of barcoded index sequences, which are specific to a given sample used for multiplexing multiple samples in high-throughput sequencing. Index adapter DNA sequences are described in Table 1.
10. Fill-in reaction on beads
NOTE: After adapter ligation, there is no phosphodiester bond between the 5’ end of the adapter and the 3’ end of the ChIP DNA. The nick can be repaired by a fill-in reaction.
11. Lambda exonuclease digestion on beads
12. Elution and reverse crosslinking
13. DNA extraction
14. Denaturing, primer annealing and primer extension
15. dA-tailing reaction
NOTE: For sticky end DNA ligation with universal adapter DNA, dATP is added to the 3’ end of blunt, dsDNA by the dA-tailing reaction.
16. Universal adapter ligation
NOTE: The universal adapter includes high-throughput sequencing-specific sequences for DNA sample recognition for sequencing chemistry. The universal adapter DNA sequences are described in Table 1.
17. DNA cleanup
18. Ligation-mediated PCR
NOTE: LM-PCR primer sequences are described in Table 1.
19. DNA purification of LM-PCR amplified DNA
Figure 2A illustrates sonication results after cell lysis and sonication, with various cycles, of motor neuron cells differentiated from mouse ES cells. The optimal number of sonication cycles (for example, 12 cycles in Figure 2A) generated strong DNA intensity in 100−400 bp DNA fragments. High-quality ChIP-exo libraries are based on the size and quantity of fragmented chromatin DNA. Thus, optimization of sonication is recommended for each cell t...
In this protocol, ChIP followed by exonuclease digestion is used to obtain DNA libraries for the identification of protein-DNA interactions in mammalian cells at ultra-high mapping resolution. Many variables contribute to the quality of the ChIP-exo experiment. Critical experimental parameters include the quality of antibodies, optimization of sonication, and the number of LM-PCR cycles. These critical experimental parameters are also what can limit ChIP-exo experiments and will be discussed below.
The authors have nothing to disclose.
We thank the member of the Rhee laboratory for sharing unpublished data and valuable discussions. This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) grant RGPIN-2018-06404 (H.R.).
Name | Company | Catalog Number | Comments |
Agarose, UltraPure | Invitrogen | 16500 | Checking Sonication (Section 4.3.6) and Gel Purification of LM-PCR Amplified DNA (Section 19.1) |
Albumin, Bovine Serum (BSA), Protease Free, Heat Shock Isolation, Min. 98% | BioShop | ALB003 | Blocking Solution |
Antibody against Isl1 | DSHB | 39.3F7 | Antibody incuation with beads (Section 5.6) |
Bioruptor Pico | Diagenode | B01060010 | Sonicating Chromatin (Section 3.3) |
Bovine serum albumin (BSA), Molecular Biology Grade | New England BioLabs | B9000S | Fill-in Reaction on Beads (Section 10.2) and Denaturing, Primer Annealing and Primer Extension (Section 14.2) |
Centrifuge 5424 R | Eppendorf | 5404000138 | Sonicating Chromatin (Section 3.5), Checking Sonication (Section 4.3.1, 4.3.3 and 4.3.4) |
Centrifuge 5804 R | Eppendorf | 22623508 | Harvest, cross-linking and freezing cells (Section 1.3), Cell lysis (Section 2.2 and 2.3), Sonicating Chromatin (Section 3.1) |
cOmplete, Mini, EDTA-free Protease Inhibitor Cocktail | Roche | 4693159001 | Added to all buffers, except Proteinase K buffer and ChIP Elution buffer |
dATP Solution | New England BioLabs | N0440S | dA-Tailing Reaction (Section 15.1) |
Deoxycholic Acid Sodium Salt | fisher scientific | BP349 | Lysis Buffer 3, High Salt Wash Buffer and LiCl Wash Buffer |
dNTP Mix, Molecular Biology Grade | Thermo Scientific | R0192 | Fill-in Reaction on Beads (Section 10.2) and Denaturing, Primer Annealing and Primer Extension (Section 14.2) |
DreamTaq Green PCR Master Mix, 2x | Thermo Scientific | K1081 | Ligation-Mediated PCR (Section 18.1) |
EDTA, 0.5 M, Sterile Solution, pH 8.0 | BioShop | EDT111 | Lysis Buffer 1-3, Checking Sonication (Section 4.1), High Salt Wash Buffer, LiCl Wash Buffer and ChIP Elution Buffer |
Ethyl Alcohol Anhydrous, 100% | Commercial alcohols | P006EAAN | Checking Sonication (Section 4.3.3) |
Formaldehyde, 36.5-38%, contains 10-15% methanol | Sigma | F8775 | Harvest, cross-linking and freezing cells (Section 1.1) |
Glycerol, Reagent Grade, min 99.5% | BioShop | GLY002 | Lysis Buffer 1 |
Glycine, Biotechnology Grade, min. 99% | BioShop | GLN001 | Harvest, cross-linking and freezing cells (Section 1.2) |
Glycogen, RNA Grade | Thermo Scientific | R0551 | Checking Sonication (Section 4.3.3) |
HEPES, 1 M Sterile-filtered Solution, pH 7.3 | BioShop | HEP003 | Lysis Buffer 1, High Salt Wash Buffer |
Klenow Fragment (3->5 exo-) | New England BioLabs | M0212S | dA-Tailing Reaction (Section 15.1) |
Lambda exonuclease | New England BioLabs | M0262S | Lambda Exonuclease Digestion on Beads (Section 11.2) |
Ligase Enhancer | New England BioLabs | E7645S | NEBNext Ultra II DNA Library Kit. Index Adapter Ligation on Beads (Section 9.1) and Universal Adapter Ligation (Section 16.1) |
Ligase Master Mix | New England BioLabs | E7645S | NEBNext Ultra II DNA Library Kit. Index Adapter Ligation on Beads (Section 9.1) and Universal Adapter Ligation (Section 16.1) |
Lithium Chloride (LiCl), Reagent grade | Bioshop | LIT704 | LiCl Wash Buffer |
Magnetic beads for ChIP (Dynabeads Protein G) | Dynabeads Protein G (magnetic beads for ChIP) | Dynabeads Protein G (magnetic beads for ChIP) | Antibody incubation with beads (Section 5) |
Magnetic beads for DNA purification (AMPure XP Beads) | Beckman Coulter | A63880 | DNA Extraction (Section 13.3) and DNA Clean-up (Section 17.1) |
Magnetic rack (DynaMag-2 Magnet) | Invitrogen | 12321D | Used in many steps in Sections: 5 - 11, 13 |
MinElute Gel Extraction Kit | Qiagen | 28604 | Gel Purification of PCR Amplified DNA (Section 19.2) |
N-Lauroylsarcosine sodium salt solution, 30% aqueous solution, ≥97.0% (HPLC) | Sigma | 61747 | Lysis Buffer 3 |
Octylphenol Ethoxylate (IGEPAL CA630) | BioShop | NON999 | Lysis Buffer 1 and LiCl Wash Buffer |
Phenol:Chloroform:Isoamyl Alcohol, Biotechnology Grade (25:24:1) | BioShop | PHE512 | Checking Sonication (Section 4.3.1) |
phi29 DNA Polymerase | New England BioLabs | M0269L | Fill-in Reaction on Beads (Section 10.2) and Denaturing, Primer Annealing and Primer Extension (Section 14.3 and 14.4) |
Phosphate-Buffered Saline (PBS), 1x | Corning | 21040CV | Harvest, cross-linking and freezing cells (Section 1.3) and Sonicating Chromatin (Section 3.1), Antibody incuation with beads (Section 5.1) |
PowerPac Basic Power Supply | BioRad | 1645050 | Checking Sonication (Section 4.3.6) and Gel Purification of LM-PCR Amplified DNA (Section 19.1) |
ProFlex PCR System | Applied Biosystems | ProFlex PCR System | Used in Sections: 14.2, 14.4, 15.2, 16.2 and 18.2 |
Protein LoBind Tube, 2.0 mL | Eppendorf | 22431102 | Antibody Incubation with Beads (Section 5.2) and Chromatin Immunoprecipitation (Section 6.3) |
Proteinase K Solution, RNA Grade | Invitrogen | 25530049 | Checking Sonication (Section 4.2) and Elution and Reverse Crosslinking (Section 12.3) |
Qubit 4.0 Fluorometer | Invitrogen | Q33226 | Gel Purification of PCR Amplified DNA (Section 19.3) |
Quibit dsDNA BR assay kit | Invitrogen | Q32853 | Gel Purification of PCR Amplified DNA (Section 19.3) |
Rnase A, Dnase and Protease-free | Thermo Scientific | EN0531 | Checking Sonication (Section 4.3.2) and DNA Extraction (Section 13.2) |
Sodium chloride (NaCl), BioReagent | Sigma | S5886 | Lysis Buffer 1-3, High Salt Wash Buffer |
Sodium Dodecyl Sulfate (SDS), Electrophoresis Grade | BioShop | SDS001 | Checking Sonication (Section 4.1), High Salt Wash Buffer and ChIP Elution Buffer |
Sonication beads and 15 mL Bioruptor Tubes | Diagenode | C01020031 | Sonicating Chromatin (Section 3.1 and 3.2) |
ThermoMixer F1.5 | Eppendorf | 5384000020 | Section 4.2, 4.3.2, 4.3.5, 8.2, 9.2, 10.3, 11.2, 12.2, 12.3, 13.2 and 16.2 |
Trizma hydrochloride solution (Tris-HCl), BioPerformance Certified, 1 M, pH 7.4 | Sigma | T2194 | 10 mM Tris-HCl Buffer |
Trizma hydrochloride solution (Tris-HCl), BioPerformance Certified, 1 M, pH 8.0 | Sigma | T2694 | Lysis Buffer 2, Lysis Buffer 3, Checking Sonication (Section 4.1), LiCl Wash Buffer and ChIP Elution Buffer |
Ultra II End Repair/dA-Tailing Module (24 rxn -> 120 rxn) | New England BioLabs | E7546S | End Prep Reaction mix and End Prep Enzyme mix. End-repair and dA-Tailing Reaction on Beads (Section 8.2) |
VWR Mini Tube Rocker, Variable Speed | VWR | 10159-752 | Used in many steps in sections: 1, 2, 5, 6 and 7 |
2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethanol, Triton X-100, Reagent Grade | BioShop | TRX506 | Lysis Buffer 1, Sonicating Chromatin (Section 3.4) and High Salt Wash Buffer |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone