Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The goal of the reported protocols is to create rechargeable zinc-sponge electrodes that suppress dendrites and shape change in zinc batteries, such as nickel–zinc or zinc–air.
We report two methods to create zinc-sponge electrodes that suppress dendrite formation and shape change for rechargeable zinc batteries. Both methods are characterized by creating a paste made of zinc particles, organic porogen, and viscosity-enhancing agent that is heated under an inert gas and then air. During heating under the inert gas, the zinc particles anneal together, and the porogen decomposes; under air, the zinc fuses and residual organic burns out, yielding an open-cell metal foam or sponge. We tune the mechanical and electrochemical properties of the zinc sponges by varying zinc-to-porogen mass ratio, heating time under inert gas and air, and size and shape of the zinc and porogen particles. An advantage of the reported methods is their ability to finely tune zinc-sponge architecture. The selected size and shape of the zinc and porogen particles influence the morphology of the pore structure. A limitation is that resulting sponges have disordered pore structures that result in low mechanical strength at low volume fractions of zinc (<30%). Applications for these zinc-sponge electrodes include batteries for grid-storage, personal electronics, electric vehicles, and electric aviation. Users can expect zinc-sponge electrodes to cycle up to 40% depth of discharge at technologically relevant rates and areal capacities without the formation of separator-piercing dendrites.
The purpose of the reported fabrication methods is to create zinc (Zn) sponge electrodes that suppress dendrite formation and shape change. Historically, these problems have limited the cycle life of Zn batteries. Zinc-sponge electrodes have resolved these issues, enabling Zn batteries with longer cycle lives1,2,3,4,5,6. The sponge structure suppresses dendrite formation and shape change because (1) the fused Zn framework electrically wires the entire volume of the sponge; (2) the pores hold zincate near the Zn-sponge surface; and (3) the sponge has a high surface area that decreases local current density below values identified to sprout dendrites in alkaline electrolytes7. However, if sponge surface area is too high, substantial corrosion occurs5. If the sponge pores are too large, the sponge will have a low volumetric capacity5. Also, if the sponge pores are too small, the Zn electrode will have insufficient electrolyte to access Zn during discharge, resulting in low power and capacity5,6.
The rationale behind the reported fabrication methods is to create Zn sponges with appropriate sponge porosities and pore diameters. Experimentally, we find that Zn sponges with porosities from 50 to 70% and pore diameters near 10 µm cycle well in full-cell batteries and display low corrosion rates5. We note that existing methods to manufacture commercial metal foams fail to achieve similar morphologies on these length scales8, so the reported fabrication methods are needed.
The advantages of the methods reported here over alternatives are characterized by fine control of sponge features and by the ability to fabricate large, dense Zn sponges with technologically relevant areal-capacity values5,6,9,10. Alternative methods to create Zn foams may be unable to create comparable 10 µm pores with sponge porosities near 50%. Such alternatives may, however, require less energy to fabricate because they avoid high-temperature processing steps. Alternative processes include the following strategies: cold sintering Zn particles11, depositing Zn on three-dimensional host structures12,13,14,15,16,17, cutting Zn foil into two-dimensional foams18, and creating Zn foams via spinodal decomposition19 or percolation dissolution20.
The context of the reported methods in the wider body of the published literature is primarily established by work from Drillet et al.21. They adapted methods of fabricating porous ceramics to create one of the earliest reported three-dimensional, albeit fragile, Zn foams for batteries. These authors, however, failed to demonstrate rechargeability, likely because of the poor connectivity between the Zn particles. Prior to rechargeable Zn-sponge electrodes, the best alternative to a Zn foil electrode was a Zn-powder electrode, wherein Zn powder is mixed with a gel electrolyte. Zinc-powder electrodes are commercially used in primary alkaline batteries (Zn–MnO2) but have poor rechargeability because Zn particles become passivated by Zn oxide (ZnO), which can increase local current density that spurs dendrite growth3,22. We note that there are other dendrite-suppression strategies that do not involve foam or sponge architectures23,24.
The reported Zn-sponge fabrication methods require a tube furnace, sources of air and nitrogen gas (N2), and a fume hood. All steps can be performed at a lab desk without environmental control, but exhaust from the tube furnace during heat treatment should be piped to a fume hood. Resulting electrodes are appropriate for those interested in creating rechargeable Zn electrodes capable of high areal capacity (> 10 mAh cmgeo–2)6.
The first reported fabrication method is an emulsion-based route to create Zn-sponge electrodes. The second, is an aqueous-based route. An advantage of the emulsion route is its ability to create Zn paste that, when dried, is easy to demold from a mold cavity. A disadvantage is its reliance on expensive materials. For the aqueous route, sponge preforms can be challenging to demold, but this process uses inexpensive and abundant materials.
Both methods involve mixing Zn particles with a porogen and viscosity-enhancing agent. The resulting mixture is heated under N2 and then breathing air (not synthetic air). During heating under N2, the Zn particles anneal and the porogen decomposes; under breathing air, the annealed Zn particles fuse and the porogen burns out. These processes yield metal foams or sponges. The mechanical and electrochemical properties of the Zn sponges can be tuned by varying Zn-to-porogen mass ratio, heating time under N2 and air, and size and shape of the Zn and porogen particles.
Access restricted. Please log in or start a trial to view this content.
1. An emulsion-based method to create Zn-sponge electrodes
2. An aqueous-based method to create Zn-sponge electrodes
Access restricted. Please log in or start a trial to view this content.
Resulting, fully heat-treated, emulsion-based Zn sponges have densities of 2.8 g∙cm–3 while aqueous-based sponges approach 3.3 g∙cm–3. During heating under air, a layer of ZnO forms on the Zn surfaces, which should have a thickness of 0.5–1.0 µm (observed using scanning electron microscopy)5. The solid in the resulting sponges should be 72% Zn (emulsion version) or 78% Zn (aqueous version) with the remainder being ZnO (measured by X-ray diff...
Access restricted. Please log in or start a trial to view this content.
Modifications and troubleshooting associated with these protocols include filling the freshly mixed Zn paste into a mold cavity. Care should be taken to avoid air pockets. Unwanted voids can be decreased by tapping the mold after filling or while filling. Because the aqueous Zn paste is dry, pressure can be applied directly to the Zn paste to push out air pockets while filling up the mold cavity.
A limitation of the methods is that Zn-sponge pore structure is disordered, but the Zn and porogen...
Access restricted. Please log in or start a trial to view this content.
J.F.P., D.R.R., and J.W.L. hold patents related to zinc electrodes: US Patents no. 9802254, 10008711, 10720635, and 10763500, EU Patent no 2926395, and China Patent no. 104813521.
This research was funded by the United States Office of Naval Research.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Corn starch | Argo | Not applicable | This acts as a porogen and viscosity-enhancing agent. |
Decane | MilliporeSigma | D901 | |
Medium viscosity water-soluble carboxymethyl cellulose (CMC) sodium salt | MilliporeSigma | C4888-500G | This CMC acts primarily as a viscosity-enhancing agent. |
Overhead stirrer | Caframo Lab Solutions | BDC3030 | |
Small cylindrical models for Zn sponges | VWR | 66014-358 | The caps of the vials can be used as molds. |
Sodium dodecyl sulfate | MilliporeSigma | 436143 | |
Water-insoluble IonSep CMC 52 preswollen carboxymethyl cellulose resin | BIOpHORETICS | B45019.01 | This CMC acts as a porogen and viscosity-enhancing agent. |
Zn powder | EverZinc | Custom order |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone