JoVE Logo
Centro de Recursos para Docentes

Entrar

Broad Institute of Harvard and MIT

2 ARTICLES PUBLISHED IN JoVE

image

Immunology and Infection

Measuring Growth and Gene Expression Dynamics of Tumor-Targeted S. Typhimurium Bacteria
Tal Danino *1, Arthur Prindle *2, Jeff Hasty 2,3,4, Sangeeta Bhatia 1,5,6,7,8
1Health Sciences and Technology, Massachusetts Institute of Technology, 2Department of Bioengineering, University of California, San Diego , 3Biocircuits Institute, University of California, San Diego , 4Molecular Biology Section, Division of Biological Science, University of California, San Diego , 5Broad Institute of Harvard and MIT, 6Department of Medicine, Brigham and Women's Hospital, 7Electrical Engineering and Computer Science and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 8Howard Hughes Medical Institute

The goal of these experiments is to generate quantitative time-course data on the growth and gene expression dynamics of attenuated S. typhimurium bacterial colonies growing inside tumors. This video covers tumor cell preparation and implantation, bacteria preparation and injection, whole-animal luminescence imaging, tumor excision, and bacterial colony counting.

image

JoVE Core

Quantification of Protein Interaction Network Dynamics using Multiplexed Co-Immunoprecipitation
Emily A. Brown 1,2, Steven C. Neier 3,4, Claudia Neuhauser 5, Adam G. Schrum 6,7,8, Stephen E.P. Smith 1,2,9
1Center for Integrative Brain Research, Seattle Children's Research Institute, 2Graduate Program in Neuroscience, University of Washington, 3Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 4Broad Institute of Harvard and MIT, 5Department of Mathematics, University of Houston, 6Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, 7Department of Surgery, School of Medicine, University of Missouri, 8Department Bioengineering, College of Engineering, University of Missouri, 9Department of Pediatrics, University of Washington

Quantitative Multiplex Immunoprecipitation (QMI) uses flow cytometry for sensitive detection of differences in the abundance of targeted protein-protein interactions between two samples. QMI can be performed using a small amount of biomaterial, does not require genetically engineered tags, and can be adapted for any previously defined protein interaction network.

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2024 MyJoVE Corporation. Todos os direitos reservados