We have optimized a microencapsulation technique as an effective 3D platform for propagation and differentiation of embryonic stem cells to endoderm and dopaminergic (DA) neurons. It also provides an opportunity for immune-isolation of cells from the host during transplantation. This platform can be adapted for other cell types.
A method for the assembly of adhesive and soluble gradients in a microscopy chamber for live cell migration studies is described. The engineered environment combines antifouling surfaces and adhesive tracks with solution gradients and therefore allows one to determine the relative importance of guidance cues.
An integrated device, incorporating a dye-sensitized solar cell and triplet-triplet annihilation up-conversion unit was produced, affording enhanced light harvesting, from a wider section of the solar spectrum. Under modest irradiation levels a significantly enhanced response to low energy photons was demonstrated, yielding a record figure of merit for dye-sensitized solar cells.
Supraspinal projections are important for pain perception and other behaviors, and serotonergic fibers are one of these fiber systems. The present study focused on the application of the combined CLARITY/CUBIC protocol to the mouse spinal cord in order to investigate the termination of these serotonergic fibers.
This protocol details the important steps required for the bioconjugation of a cysteine containing protein to a maleimide, including reagent purification, reaction conditions, bioconjugate purification and bioconjugate characterization.
This article describes a process for producing polymeric self-assembled nanoparticles using visible light mediated dispersion polymerization. Using low energy visible light to control the polymerization allows for the reproducible formation of self-assembled worm-like micelles at high solids content.
This report describes a CUBIC protocol to clarify full thickness mouse skin biopsies, and visualize protein expression patterns, proliferating cells, and sebocytes at the single cell resolution in 3D. This method enables accurate assessment of skin anatomy and pathology, and of abnormal epidermal phenotypes in genetically modified mouse lines.
This work outlines a protocol to achieve dynamic, non-invasive monitoring of heat transfer from laser-irradiated gold nanoparticles to tBLMs. The system combines impedance spectroscopy for the real-time measurement of conductance changes across the tBLMs, with a horizontally focused laser beam that drives gold nanoparticle illumination, for heat production.
The present protocol describes the digital light processing-based 3D printing of polymeric materials using type I photoinitiated reversible addition-fragmentation chain transfer polymerization and the subsequent in situ material post-functionalization via surface-mediated polymerization. Photoinduced 3D printing provides materials with independently tailored and spatially controlled bulk and interfacial properties.
This article focuses on robotic vagus-sparing total gastrectomy. The techniques and pitfalls of vagus preservation, sutured esophagojejunostomy, jejunal pouch formation, and Roux-en-Y reconstruction with a staple-stapled jejunojejunostomy are discussed.
SOBRE A JoVE
Copyright © 2024 MyJoVE Corporation. Todos os direitos reservados