Entrar

Visão Geral

Nas células eucarióticas, a replicação do DNA é altamente conservada e fortemente regulada. Múltiplos cromossomas lineares devem ser duplicados com alta fidelidade antes da divisão celular, por isso existem muitas proteínas que cumprem funções especializadas no processo de replicação. A replicação ocorre em três fases: iniciação, alongamento e término, e termina com dois conjuntos completos de cromossomas no núcleo.

Muitas Proteínas Orquestram a Replicação na Origem

A replicação eucariótica segue muitos dos mesmos princípios da replicação do DNA procariótico, mas como o genoma é muito maior e os cromossomas são lineares e não circulares, o processo requer mais proteínas e tem algumas diferenças fundamentais. A replicação ocorre simultaneamente em múltiplas origens de replicação ao longo de cada cromossoma. As proteínas iniciadoras reconhecem e ligam-se à origem, recrutando helicase para desenrolar a dupla hélice de DNA. Em cada ponto de origem, dois garfos de replicação são formados. A primase adiciona então primers de RNA curtos às cadeias simples de DNA, que servem como ponto de partida para a DNA polimerase se ligar e começar a copiar a sequência. O DNA só pode ser sintetizado na direção de 5’ a 3’, pelo que a replicação de ambas as cadeias de um único garfo de replicação prossegue em duas direções diferentes. A cadeia contínua é sintetizada continuamente, enquanto a cadeia descontínua é sintetizada em curtas porções de 100-200 pares de bases de comprimento, chamados fragmentos de Okazaki. Assim que a maior parte da replicação estiver completa, enzimas RNase removem os primers de RNA e a DNA ligase junta quaisquer lacunas na nova cadeia.

Dividindo o Trabalho de Replicação entre Polimerases

A carga do trabalho de copiar DNA em eucariotas é dividida entre vários tipos diferentes de enzimas de polimerase de DNA. As principais famílias de DNA polimerases em todos os organismos são categorizadas pela similaridade das suas estruturas proteicas e sequências de aminoácidos. As primeiras famílias a serem descobertas foram denominadas A, B, C e X, com as famílias Y e D identificadas posteriormente. As polimerases da família B em eucariotas incluem Pol α, que também funciona como primase no garfo de replicação, e Pol δ e ε, as enzimas que fazem a maior parte do trabalho de replicação de DNA nas cadeias contínua e descontínua do molde, respectivamente. Outras DNA polimerases são responsáveis por tarefas como reparar danos no DNA, copiar DNA mitocondrial e plastídeo, e preencher lacunas na sequência de DNA na cadeia descontínua após remoção dos primers de RNA.

Telómeros Protegem as Extremidades dos Cromossomas da Degradação

Como os cromossomas eucarióticos são lineares, eles são susceptíveis à degradação nas extremidades. Para proteger informações genéticas importantes contra danos, as extremidades dos cromossomas contêm muitas repetições não codificadas de DNA rico em G altamente conservado: os telómeros. Uma pequena saliência de 3’ de cadeia simples em cada extremidade do cromossoma interage com proteínas especializadas, que estabilizam o cromossoma dentro do núcleo. Devido à forma como a cadeia descontínua é sintetizada, uma pequena quantidade de DNA telomérico não pode ser replicada com cada divisão celular. Como resultado, os telómeros gradualmente ficam mais curtos ao longo de muitos ciclos celulares e podem ser usados como um marcador de envelhecimento celular. Certas populações de células, como células germinativas e células estaminais, expressam telomerase, uma enzima que alonga os telómeros, permitindo que a célula se submeta a mais ciclos celulares antes de os telómeros encurtarem.

Tags
ReplicationEukaryotesProkaryotic FactorsEukaryotic DNA DuplicationOrigin Of ReplicationRecognition ComplexHelicaseDNA StrandsBubbleForksPrimaseRNA PrimersDNA PolymeraseLeading StrandLagging StrandOkazaki FragmentsDNA TemplateOrigins Of ReplicationLinear Eukaryotic ChromosomeReplication TerminationSpheres CoalescencePrimers RemovalDNA SwappingDNA LigaseEnd Primer DisappearanceUncopied Stretch Of DNA TemplateTelomeraseNon coding DNA Sequence

Do Capítulo 13:

article

Now Playing

13.6 : Replicação em Eucariontes

Estrutura e Função do DNA

169.4K Visualizações

article

13.1 : A Hélice do DNA

Estrutura e Função do DNA

136.1K Visualizações

article

13.2 : Empacotamento do DNA

Estrutura e Função do DNA

101.0K Visualizações

article

13.3 : Organização dos Genes

Estrutura e Função do DNA

67.8K Visualizações

article

13.4 : Análise do Cariótipo

Estrutura e Função do DNA

54.7K Visualizações

article

13.5 : Replicação em Procariontes

Estrutura e Função do DNA

85.3K Visualizações

article

13.7 : Verificação

Estrutura e Função do DNA

53.2K Visualizações

article

13.8 : Reparo de Pareamento Errado

Estrutura e Função do DNA

39.4K Visualizações

article

13.9 : Reparo por Excisão de Nucleotídeo

Estrutura e Função do DNA

36.3K Visualizações

article

13.10 : Mutações

Estrutura e Função do DNA

75.0K Visualizações

article

13.11 : Transcrição

Estrutura e Função do DNA

145.5K Visualizações

article

13.12 : Tradução

Estrutura e Função do DNA

140.3K Visualizações

article

13.13 : Transformação Bacteriana

Estrutura e Função do DNA

54.6K Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados