Entrar

The Bohr Model

Niels Bohr proposed a model for the hydrogen atom in 1913 that described discrete energy states are associated with a fixed electron orbit around the nucleus. Importantly, an atom cannot discharge energy while its electrons are in stationary states. An electron can only emit energy by changing energy states. To change energy states, an electron must move from one orbit to another by either absorbing or emitting energy. This change can only occur if the absorbed or emitted energy equals the difference between the two states. Electrons cannot exist between orbits.

The quantum number, n, is used to label the different energy states. The lowest energy state is the ground state, which is n equal to one. The excited states are labeled n equal to 2, 3, 4, and so on. When an electron at the ground state absorbs a photon whose energy equals the difference between the ground and second state, the electron becomes excited and transitions from the ground state to the n= 2 excited state. If the energy of the photon equals the difference between the ground and third state, the electron moves to the n=3 state.

According to Bohr’s model, the potential energy of an electron in the nth level can be calculated using the following equation:

where En is the potential energy, R is the Rydberg constant (1.0974 × 107 m-1), h is Planck's constant (6.62607004 × 10-34 m2·kg/s), and c is the speed of light (~ 3 × 108 m/s). Electrons can also spontaneously return to the ground state or any other lower excited state. When this happens, the excess energy is released in the form of an emitted photon. The energy of the photon is equal to the energy difference between the higher and lower energy states. That energy corresponds to wavelengths of light. Since each type of atom has different energy levels, the light emitted from each transition varies for each atom. For a sample of mixed molecules, the emitted light contains a range of wavelengths in what is called a continuous spectrum. For a sample containing atoms of a single element, the emitted light contains only certain wavelengths, which can be viewed as discrete lines once separated by a prism.

The Hydrogen Atom

Looking specifically at the hydrogen atom, the excitation of its electrons requires the absorption of sufficient energy to split the bond in the diatomic molecule H2. Since more energy is used to split the molecule than needed, the electrons in the hydrogen atom absorb the excess energy and are excited to a higher energy level. When the electrons spontaneously return to a lower energy level, light is emitted, which corresponds to the energy difference between the excited level and lower level.

When discussing the emission of energy, the higher energy level is considered the initial level, or ni, while the lower level is considered the final level, or nf. The wavelengths of emitted light ultimately depend on the energy difference between the two levels.

In a pure sample of hydrogen gas, the emission spectrum appears as distinct lines of discrete wavelengths that are specific to the element hydrogen. Some of these lines are in the visible range of the electromagnetic spectrum, while some are in the ultraviolet or infrared range.

The Balmer Series

The series of visible lines in the hydrogen atom spectrum are named the Balmer series. This series of spectral emission lines occur when the electron transitions from a high-energy level to the lower energy level of n=2. Johann Balmer observed these spectral lines at 410.2 nm, 434.1 nm, 486.1 nm, and 656.3 nm, which correspond to transitions from the n=6, n=5, n=4, and n=3 energy levels to the n=2 level, respectively.

Balmer was able to relate these wavelengths of emitted light using the Balmer formula.

Here, λ is the observed wavelength, C is a constant (364.50682 nm), n is the lower energy level with a value of 2, and m is the higher energy level, which has a value greater than 3. This observation was then refined by Johannes Rydberg, where R is the Rydberg constant.

Remember that this equation describes emitted light, so the higher energy level is considered the initial level, or ni, while the lower level is considered the final level, or nf. In the case of the Balmer series, nf is equal to 2. This equation was combined with the Bohr model to calculate the energy needed to move an electron between its initial and final energy levels, ΔE.

Later, other spectral series for the hydrogen atom were discovered. For example, the Lyman series contains emission lines with energies in the ultraviolet region.

References

  1. Kotz, J.C., Treichel Jr, P.M., Townsend, J.R. (2012). Chemistry and Chemical Reactivity. Belmont, CA: Brooks/Cole, Cengage Learning.
  2. Silderberg, M.S. (2009). Chemistry: The Molecular Nature of Matter and Change. Boston, MA: McGraw Hill.

Tags

JoVE Lab ChemLab 43 Concept

Vídeos desta coleção:

article

Now Playing

Balmer Series

Vídeos relacionados

59.9K Visualizações

article

Técnicas de Laboratório

Vídeos relacionados

242.3K Visualizações

article

Medição Científica e Habilidades de Laboratório

Vídeos relacionados

159.9K Visualizações

article

Estequiometria, rendimento do produto e reagentes limitantes

Vídeos relacionados

89.0K Visualizações

article

Reações redox

Vídeos relacionados

132.4K Visualizações

article

Lei dos Gases Ideais

Vídeos relacionados

143.0K Visualizações

article

Concentrações de ácidos e bases

Vídeos relacionados

117.2K Visualizações

article

Buffers

Vídeos relacionados

151.6K Visualizações

article

Entalpia de Reação

Vídeos relacionados

131.8K Visualizações

article

Solubilidade

Vídeos relacionados

86.2K Visualizações

article

Emissão de chama de metal

Vídeos relacionados

75.7K Visualizações

article

Lei da Cerveja

Vídeos relacionados

93.2K Visualizações

article

Dependência de Concentração

Vídeos relacionados

28.9K Visualizações

article

Dependência da temperatura

Vídeos relacionados

31.7K Visualizações

article

Células Galvânicas

Vídeos relacionados

78.0K Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados