JoVE Logo

Entrar

4.10 : Quiralidade em Nitrogênio, Fósforo e Enxofre

Chirality is most prevalent in carbon-based tetrahedral compounds, but this important facet of molecular symmetry extends to sp3-hybridized nitrogen, phosphorus and sulfur centers, including trivalent molecules with lone pairs. Here, the lone pair behaves as a functional group in addition to the other three substituents to form an analogous tetrahedral center that can be chiral.

A consequence of chirality is the need for enantiomeric resolution. While this is theoretically possible for all chiral amines, it is, in practice, difficult to separate the enantiomers of most chiral amines. This is due to pyramidal or nitrogen inversion, where the enantiomers are readily convertible from one form to another at room temperature, as the barrier to interconversion is ~25 kJ/mol. To briefly summarize the mechanism of this conversion, when the enantiomer passes through the transition state for inversion, the central nitrogen atom is sp2 hybridized, with its unshared electron pair occupying a p orbital. Therefore, ammonium salts that have no lone pair do not exhibit this phenomenon, and such quaternary chiral salts can be resolved into individual (relatively stable) enantiomers. Further, sp3 phosphorus and sulfur compounds, despite their lone pair, possess a high barrier for interconversion. Hence, their enantiomeric resolution is feasible.

Recall that enantiomers are non-superposable and are, therefore, different compounds with distinct identities. The nomenclature of chiral nitrogen, phosphorus and sulfur centers is like that of chiral carbon centers. The process of naming their enantiomers follows the Cahn–Ingold–Prelog rules or (R-S system), which involves three steps. The three steps are the same as with carbon centers—namely, assignment of priorities to the substituent groups, the orientation of the lowest-priority substituent away from the observer, and determining whether the priority sequence of the other three groups at the chiral center is clockwise or counterclockwise. However, in chiral centers with a lone pair, the lone pair is always assigned the lowest priority, as compared to hydrogen in systems without a lone pair. Accordingly, the molecule is rotated such that the lone pair points away. As with carbon, the chiral center is the R configuration if the one-two-three sequence is clockwise and the S configuration if the sequence is counterclockwise.

Tags

ChiralityNitrogenPhosphorusSulfurCarbon based Tetrahedral CompoundsMolecular SymmetrySp3 hybridized NitrogenTrivalent MoleculesLone PairFunctional GroupTetrahedral CenterEnantiomeric ResolutionChiral AminesPyramidal Or Nitrogen InversionInterconversion BarrierTransition StateP OrbitalAmmonium SaltsQuaternary Chiral SaltsSp3 Phosphorus CompoundsSp3 Sulfur Compounds

Do Capítulo 4:

article

Now Playing

4.10 : Quiralidade em Nitrogênio, Fósforo e Enxofre

Estereoisomerismo

5.6K Visualizações

article

4.1 : Quiralidade

Estereoisomerismo

22.6K Visualizações

article

4.2 : Isomeria

Estereoisomerismo

17.8K Visualizações

article

4.3 : Estereoisômeros

Estereoisomerismo

12.3K Visualizações

article

4.4 : Nomenclatura de Enantiômeros

Estereoisomerismo

19.6K Visualizações

article

4.5 : Propriedades de Enantiômeros e Atividade Óptica

Estereoisomerismo

16.5K Visualizações

article

4.6 : Moléculas com Múltiplos Centros Quirais

Estereoisomerismo

11.1K Visualizações

article

4.7 : Projeções Fischer

Estereoisomerismo

12.8K Visualizações

article

4.8 : Misturas Racêmicas e a Resolução de Enantiómeros

Estereoisomerismo

17.9K Visualizações

article

4.9 : Estereoisomerismo de Compostos Cíclicos

Estereoisomerismo

8.6K Visualizações

article

4.11 : Proquiralidade

Estereoisomerismo

3.7K Visualizações

article

4.12 : Quiralidade na Natureza

Estereoisomerismo

12.4K Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados