Entrar

Microtubules form through the end-to-end polymerization of tubulin heterodimers. Kinetochore microtubules originate from the spindle poles, and their plus-ends connect with the kinetochores on sister-chromatids. Ndc80 protein complexes, present on the kinetochore, form low-affinity links with the plus end of these kinetochore microtubules.

Plus-end depolymerization releases tubulin heterodimers from the terminal region of the microtubule. As tubulin subunits are lost, the Ndc80 complexes detach and reattach at sites ahead of the depolymerizing segment of the microtubule. The process results in a poleward shift, pulling the kinetochore and its associated chromatid towards the spindle pole.

Microtubule flux pulls chromatids toward the spindle poles.

The tubulin subunits forming the microtubule lattice move continuously towards the minus-end, exhibiting a minus-end directed microtubule flux.

Microtubule flux develops when continuous depolymerization at the minus-end is balanced by continuous polymerization at the plus-end. A constant rate of depolymerization and polymerization maintains a fixed microtubule length while the individual subunits within the lattice move toward the depolymerizing end.

Kinetochore microtubules undergoing flux pull the kinetochores and their associated chromatids along the direction of the flux, towards the spindle poles.

Microtubule motor proteins – Dynein and Kinesin-5

Dyneins are microtubule minus-end directed motor proteins. Dyneins link the plus ends of astral microtubules with the cytoskeletal components in the cell cortex, thereby positioning the spindle poles within the cell. The minus-end directed movement of dyneins generates a force that pulls the spindle poles toward the cell cortex.

Kinesin-5 are plus-end directed motor proteins. Kinesin-5 interacts with the plus-ends of anti-parallel interpolar microtubules in the spindle midzone. These microtubule-motors help the interpolar microtubules to slide past one another while generating a force pushing the spindle poles apart.

Tags

Anaphase ABMicrotubulesTubulin HeterodimersKinetochore MicrotubulesSpindle PolesPlus endsKinetochoresNdc80 Protein ComplexesPlus end DepolymerizationPoleward ShiftMicrotubule FluxChromatidsMinus end Directed Microtubule FluxDepolymerizationPolymerizationFixed Microtubule LengthKinetochore Microtubules Undergoing FluxMicrotubule Motor ProteinsDyneinKinesin 5

Do Capítulo 18:

article

Now Playing

18.13 : Anáfase A e B

Divisão Celular

3.8K Visualizações

article

18.1 : Mitose e Citocinese

Divisão Celular

20.3K Visualizações

article

18.2 : Duplicação da Estrutura da Cromatina

Divisão Celular

5.2K Visualizações

article

18.3 : Coesinas

Divisão Celular

4.2K Visualizações

article

18.4 : Condensinas

Divisão Celular

3.2K Visualizações

article

18.5 : O Fuso Mitótico

Divisão Celular

6.1K Visualizações

article

18.6 : Duplicação do Centrossomo

Divisão Celular

3.8K Visualizações

article

18.7 : Instabilidade do Microtúbulo

Divisão Celular

4.9K Visualizações

article

18.8 : Montagem do Fuso

Divisão Celular

3.4K Visualizações

article

18.9 : Fixação das Cromátides Irmãs

Divisão Celular

3.0K Visualizações

article

18.10 : Forças que atuam nos cromossomos

Divisão Celular

3.2K Visualizações

article

18.11 : Separação das Cromátides Irmãs

Divisão Celular

3.5K Visualizações

article

18.12 : O ponto de verificação da montagem do fuso

Divisão Celular

3.1K Visualizações

article

18.14 : O Anel Contrátil

Divisão Celular

6.1K Visualizações

article

18.15 : Determinação do Plano da Divisão Celular

Divisão Celular

3.1K Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados