Entrar

How can we compare the energy that releases from one reaction to that of another reaction? We use a measurement of free energy to quantitate these energy transfers. Scientists call this free energy Gibbs free energy (abbreviated with the letter G) after Josiah Willard Gibbs, the scientist who developed the measurement. According to the second law of thermodynamics, all energy transfers involve losing some energy in an unusable form such as heat, resulting in entropy. Gibbs free energy specifically refers to the energy of a chemical reaction that is available after we account for entropy. In other words, Gibbs free energy is usable energy, or energy that is available to do work.

Every chemical reaction involves a change in free energy, called delta G (∆G). We can calculate the change in free energy for any system that undergoes such a change, such as a chemical reaction. To calculate ∆G, subtract the amount of energy lost to entropy (denoted as ∆S) from the system's total energy change. The total energy in the system is enthalpy and we denote it as ∆H. The formula for calculating ∆G is as follows, where the symbol T refers to the absolute temperature in Kelvin (degrees Celsius + 273):

ΔG = ΔH TΔS

We express a chemical reaction's standard free energy change as an amount of energy per mole of the reaction product (either in kilojoules or kilocalories, kJ/mol or kcal/mol; 1 kJ = 0.239 kcal) under standard pH, temperature, and pressure conditions. We generally calculate standard pH, temperature, and pressure conditions at pH 7.0 in biological systems, 25 degrees Celsius, and 100 kilopascals (1 atm pressure), respectively. Note that cellular conditions vary considerably from these standard conditions, and so standard calculated ∆G values for biological reactions will be different inside the cell.

This text is adapted from Openstax, Biology 2e, Section 6.2: Potential, Kinetic, Free, and Activation Energy and Openstax, Chemistry 2e, Section 16.4: Free Energy.

Tags
Free EnergyGibbs Free EnergyEnergy TransferEntropyEnthalpyChemical ReactionDelta GStandard Free Energy ChangePHTemperaturePressure

Do Capítulo 3:

article

Now Playing

3.5 : Uma Introdução à Energia Livre

Energia e Catálise

7.9K Visualizações

article

3.1 : A Primeira Lei da Termodinâmica

Energia e Catálise

5.2K Visualizações

article

3.2 : A Segunda Lei da Termodinâmica

Energia e Catálise

4.8K Visualizações

article

3.3 : Entalpia Dentro da Célula

Energia e Catálise

5.5K Visualizações

article

3.4 : Entropia Dentro da Célula

Energia e Catálise

10.1K Visualizações

article

3.6 : Reações Endergônicas e Exergônicas na Célula

Energia e Catálise

13.9K Visualizações

article

3.7 : A Constante de Ligação de Equilíbrio e a Força de Ligação

Energia e Catálise

8.9K Visualizações

article

3.8 : Energia Livre e Equilíbrio

Energia e Catálise

5.9K Visualizações

article

3.9 : Desequilíbrio na Célula

Energia e Catálise

4.0K Visualizações

article

3.10 : Oxidação e Redução de Moléculas Orgânicas

Energia e Catálise

5.6K Visualizações

article

3.11 : Introdução às Enzimas

Energia e Catálise

16.4K Visualizações

article

3.12 : Enzimas e Energia de Ativação

Energia e Catálise

11.1K Visualizações

article

3.13 : Introdução à Cinética Enzimática

Energia e Catálise

19.2K Visualizações

article

3.14 : Número de Renovação e Eficiência Catalítica

Energia e Catálise

9.6K Visualizações

article

3.15 : Enzimas Cataliticamente Perfeitas

Energia e Catálise

3.8K Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados