Entrar

Chemical synapses are specialized sites between two neurons or between a neuron and a non-neuronal cell like a muscle, glandular or sensory cell.

Because chemical synapses depend on the release of neurotransmitter molecules from synaptic vesicles to pass on their signal, there is an approximately one millisecond delay between when the axon potential reaches the presynaptic terminal and when the neurotransmitter leads to opening of postsynaptic ion channels. Additionally, this signaling is unidirectional.

A synaptic cleft, usually 20-50 nm wide, separates the pre-and postsynaptic membranes. When an action potential reaches the axon terminal, it depolarizes the membrane and opens voltage-gated sodium channels. Sodium ions enter the cell, further depolarizing the presynaptic membrane. This depolarization causes voltage-gated calcium channels to open. Calcium ions entering the cell initiate a signaling cascade that causes small membrane-bound vesicles, called synaptic vesicles, containing neurotransmitter molecules to fuse with the presynaptic membrane.

Fusion of a vesicle with the presynaptic membrane causes neurotransmitter to be released into the synaptic cleft, the extracellular space between the presynaptic and postsynaptic membranes. The neurotransmitter diffuses across the synaptic cleft and binds to receptor proteins on the postsynaptic membrane. The binding of a specific neurotransmitter causes particular ion channels, like ligand-gated channels, on the postsynaptic membrane to open. Neurotransmitters can either have excitatory or inhibitory effects on the postsynaptic membrane.

Once neurotransmission has occurred, the neurotransmitter must be removed from the synaptic cleft so the postsynaptic membrane can "reset" and be ready to receive another signal.

Depending on the signal, a few or many neurotransmitter vesicles may be released, bringing about an excitatory or inhibitory postsynaptic response. This can result in an increased or decreased postsynaptic membrane potential depending on the bound neurotransmitter. Additionally, as the neurotransmitters' availability in the synaptic cleft is regulated, this helps fine-tune the neuronal signal.

Clinical Relevance

Lambert-Eaton myasthenic syndrome is an autoimmune disorder wherein antibodies are targeted against the voltage-gated calcium channels that trigger the acetylcholine neurotransmitter release. Thus, the lowered levels of acetylcholine are insufficient to cause regular muscle contractions, resulting in muscle weakness.

In Myasthenia gravis, another autoimmune syndrome, in which autoantibodies block the acetylcholine from binding the postsynaptic membrane receptor at the neuromuscular junction, inhibiting contraction. This predominantly results in muscle weakness and diminished facial expression.

This text is adapted from Openstax, Biology 2e, Section 35.2 How Neurons Communicate.

Tags
Chemical SynapsesNeurotransmitterSynaptic VesiclesPresynaptic TerminalPostsynaptic MembraneAction PotentialSynaptic CleftVoltage gated ChannelsNeurotransmissionLigand gated ChannelsExcitatory NeurotransmittersInhibitory NeurotransmittersLambert Eaton Myasthenic SyndromeCalcium ChannelsNeuronal Signaling

Do Capítulo 14:

article

Now Playing

14.13 : Sinapses Químicas

Canais e as Propriedades Elétricas das Membranas

8.3K Visualizações

article

14.1 : Aquaporinas

Canais e as Propriedades Elétricas das Membranas

4.6K Visualizações

article

14.2 : Canais iônicos de vazamento

Canais e as Propriedades Elétricas das Membranas

6.5K Visualizações

article

14.3 : Canais Iônicos Controlados por Ligante

Canais e as Propriedades Elétricas das Membranas

12.0K Visualizações

article

14.4 : Canais Iônicos Dependente de Voltagem

Canais e as Propriedades Elétricas das Membranas

7.7K Visualizações

article

14.5 : Canais Iônicos Controlados Mecanicamente

Canais e as Propriedades Elétricas das Membranas

6.0K Visualizações

article

14.6 : Estrutura do Neurônio

Canais e as Propriedades Elétricas das Membranas

12.1K Visualizações

article

14.7 : Potencial de Repouso da Membrana

Canais e as Propriedades Elétricas das Membranas

16.6K Visualizações

article

14.8 : Decaimento do Potencial de Repouso

Canais e as Propriedades Elétricas das Membranas

4.5K Visualizações

article

14.9 : Potencial de Ação

Canais e as Propriedades Elétricas das Membranas

7.2K Visualizações

article

14.10 : Canais de Rodopsinas

Canais e as Propriedades Elétricas das Membranas

2.5K Visualizações

article

14.11 : Patch Clamp

Canais e as Propriedades Elétricas das Membranas

5.2K Visualizações

article

14.12 : Sinapses Elétricas

Canais e as Propriedades Elétricas das Membranas

7.8K Visualizações

article

14.14 : Efeitos Excitatórios e Inibitórios de Neurotransmissores

Canais e as Propriedades Elétricas das Membranas

9.2K Visualizações

article

14.15 : Contração Muscular

Canais e as Propriedades Elétricas das Membranas

5.9K Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados