Entrar

Gauss' law relates the electric flux through a closed surface to the net charge enclosed by that surface. Gauss's law can be applied to find the electric field and the charge enclosed in a region depending on its charge distribution.

Consider a cross-section of a thin, infinite conducting plate having a positive charge. For such a large thin plate, as the thickness of the plate tends to zero, the positive charges lie on the plate's two large faces. Without an external electric field, the charges spread uniformly on these faces, generating an electric field directed away from the plate. If an identical negatively charged plate with the same surface charge density is brought closer to the positively charged plate, the charges on either plate attract each other. The negatively charged plate sets up an electric field directed toward itself. Thus, the net electric field is directed toward the negative plate at any point between the plates. Its magnitude is twice that of an individual plate and is given by

Equation1

However, at the outer faces of the plates, the electric field due to the positively charged plate is opposite to that of the negatively charged plate; therefore, the electric field on the outer faces of both plates is zero.

If both conducting plates are likely charged, the electric field between the plates is oppositely directed. Hence, it vanishes. However, it is non-zero at the outer faces of the plates.

The expression for the electric field at any point between the plates is also valid for a finite pair of conducting plates as long as points of observation are not close to their edges. Near an edge, planar symmetry breaks down. The field lines are curved (said to be an edge effect of fringing), and the fields become complicated to express algebraically.

Tags

Electric FieldParallel Conducting PlatesGauss s LawCharge DistributionElectric FluxSurface Charge DensityCharge AttractionNet Electric FieldOuter FacesEdge EffectFringing FieldsFinite Conducting PlatesPlanar Symmetry

Do Capítulo 23:

article

Now Playing

23.12 : Campo Elétrico de Placas Condutoras Paralelas

Lei de Gauss

768 Visualizações

article

23.1 : Fluxo Elétrico

Lei de Gauss

7.4K Visualizações

article

23.2 : Cálculo do Fluxo Elétrico

Lei de Gauss

1.6K Visualizações

article

23.3 : Lei de Gauss

Lei de Gauss

6.9K Visualizações

article

23.4 : Lei de Gauss: Resolução de Problemas

Lei de Gauss

1.6K Visualizações

article

23.5 : Lei de Gauss: Simetria Esférica

Lei de Gauss

7.2K Visualizações

article

23.6 : Lei de Gauss: Simetria Cilíndrica

Lei de Gauss

7.3K Visualizações

article

23.7 : Lei de Gauss: Simetria Planar

Lei de Gauss

7.7K Visualizações

article

23.8 : Campo Elétrico Dentro de um Condutor

Lei de Gauss

5.8K Visualizações

article

23.9 : Carga em um Condutor

Lei de Gauss

4.4K Visualizações

article

23.10 : Campo Elétrico na Superfície de um Condutor

Lei de Gauss

4.5K Visualizações

article

23.11 : Campo Elétrico de uma Esfera Não Uniformemente Carregada

Lei de Gauss

1.4K Visualizações

article

23.13 : Divergência e Rotacional do Campo Elétrico

Lei de Gauss

5.1K Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados