A truss is a structural framework consisting of slender members connected at joints, designed to support external loads while minimizing material usage and weight. Simple trusses are a type of planar truss where all members lie within a single two-dimensional plane.

The most basic planar truss is a simple truss with three members arranged in a triangular formation. This triangular truss is inherently stable and rigid due to its geometry, making it an ideal starting point for creating more elaborate truss structures. A simple truss can be expanded by strategically adding two members and a joint to the existing framework. This process can be repeated to create a larger truss structure capable of supporting greater loads over longer spans. The configuration of the truss members is critical in determining its overall strength and stability, with common simple truss types including the Pratt, Howe, and Warren trusses.

The design and analysis of simple trusses rely on two key assumptions:

  1. External loads are applied at joints: It is assumed that all external forces act only at the joints of the truss, and the weight of each member is considered negligible. If the weight of a member is significant, half of its magnitude is applied as equally distributed vertical forces at both ends of the member.
  2. Joints are treated as smooth pins: Although members may be connected using welded, bolted, or riveted joints, the joints can be assumed as smooth pins for analysis purposes. This assumption is valid as long as the centerlines of the joining members are concurrent, ensuring that truss members act as two-force members experiencing axial compression or tension.

The rigidity and determinacy of a simple truss dictate the relationship between the number of members (m) and the number of joints (j). For a truss to be statically determinate and stable, m = 2j - 3 must hold. This condition ensures that there are enough members to resist deformation under load while maintaining the stability of the structure. If a truss does not satisfy this equation, it is either indeterminate or unstable, which can lead to structural failure.

Tags
TrussStructural FrameworkSlender MembersExternal LoadsSimple TrussesPlanar TrussTriangular FormationStabilityStrengthPratt TrussHowe TrussWarren TrussDesign AnalysisExternal ForcesJointsSmooth PinsRigidityDeterminacyStructural Failure

Do Capítulo 6:

article

Now Playing

6.2 : Treliças Simples

Análise Estrutural

1.4K Visualizações

article

6.1 : Introdução às Estruturas

Análise Estrutural

860 Visualizações

article

6.3 : Método dos Nós

Análise Estrutural

598 Visualizações

article

6.4 : Método dos Nós: Resolução de Problemas I

Análise Estrutural

885 Visualizações

article

6.5 : Método dos Nós: Resolução de Problemas II

Análise Estrutural

411 Visualizações

article

6.6 : Membro de Força Zero

Análise Estrutural

1.2K Visualizações

article

6.7 : Método das Seções

Análise Estrutural

463 Visualizações

article

6.8 : Método das Seções: Resolução de Problemas I

Análise Estrutural

402 Visualizações

article

6.9 : Método das Seções: Resolução de Problemas II

Análise Estrutural

793 Visualizações

article

6.10 : Treliças Espaciais

Análise Estrutural

680 Visualizações

article

6.11 : Treliças Espaciais: Resolução de Problemas

Análise Estrutural

498 Visualizações

article

6.12 : Armações

Análise Estrutural

451 Visualizações

article

6.13 : Armações: Resolução de Problemas I

Análise Estrutural

325 Visualizações

article

6.14 : Armações: Resolução de Problemas II

Análise Estrutural

146 Visualizações

article

6.15 : Máquinas

Análise Estrutural

191 Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados