In mechanical engineering, the interaction between a threaded screw shaft and a plate gear involves analyzing the resisting torque on the plate gear that can be overpowered when a specific torsional moment is applied to the shaft. To better comprehend this concept, consider a generic situation with a threaded screw shaft with a given mean radius and lead and a plate gear with a specified mean radius. The coefficient of static friction between the screw and gear is also provided.

To evaluate the resisting torque on the plate gear that can be overpowered when a certain torsional moment is applied to the shaft, the first step is to calculate the static friction angle using the coefficient of static friction. The static friction angle, denoted as φ, is the angle whose tangent is equal to the coefficient of static friction.

Next, the lead angle is determined by substituting the values of the lead and mean radius. It is equal to the ratio of the lead to the circumference of the shaft.

The axial force, denoted as F, is the force acting along the axis of the shaft that causes the plate gear to rotate. For an impending motion in a specific direction, the axial force developed in the shaft can be determined by using a formula involving the torsional moment, static friction angle, lead angle, and mean radius.

Equation 1

The resisting torque on the plate gear equals the product of the shaft's axial force and the mean radius of the gear. By substituting the values, the resisting torque that can overpower the applied torsional moment can be determined.

Also, if the static friction angle is greater than the lead angle, the shaft is self-locking even if the moment is removed.

Finally, one can determine whether the shaft is self-locking through a series of calculations involving the static friction angle, lead angle, axial force, and resisting torque. This analysis is crucial in understanding the mechanical behavior of shafts and gears in various engineering applications.

Tags
Screw ShaftPlate GearResisting TorqueTorsional MomentStatic FrictionLead AngleMean RadiusAxial ForceSelf lockingMechanical EngineeringFriction AngleTorque CalculationEngineering Applications

Do Capítulo 8:

article

Now Playing

8.11 : Parafuso: Resolução de Problemas

Atrito

352 Visualizações

article

8.1 : Atrito Seco

Atrito

285 Visualizações

article

8.2 : Atrito Estático

Atrito

646 Visualizações

article

8.3 : Atrito Cinético

Atrito

827 Visualizações

article

8.4 : Características do Atrito Seco

Atrito

416 Visualizações

article

8.5 : Tipos de Problemas de Atrito

Atrito

463 Visualizações

article

8.6 : Atrito: Resolução de Problemas

Atrito

169 Visualizações

article

8.7 : Cunhas

Atrito

947 Visualizações

article

8.8 : Forças de Atrito em Parafusos

Atrito

1.0K Visualizações

article

8.9 : Movimento Iminente para Cima

Atrito

203 Visualizações

article

8.10 : Parafuso Auto-Travante

Atrito

1.3K Visualizações

article

8.12 : Forças de Atrito em Correias Planas

Atrito

786 Visualizações

article

8.13 : Correias Planas: Resolução de Problemas

Atrito

273 Visualizações

article

8.14 : Mancais Pivotantes

Atrito

1.0K Visualizações

article

8.15 : Mancais de Colar

Atrito

1.1K Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados