Entrar

The shape of a small drop of liquid can be considered spherical, neglecting the effect of gravity. This drop can further be considered as two equal hemispherical drops put together due to surface tension. The forces acting on the spherical drop are due to the pressure of the liquid inside the drop, the pressure due to air outside the drop, and the force due to the surface tension acting on the two hemispherical drops.

Equation1

where γ corresponds to the surface tension. Recalling that the force per unit length is the surface tension gives the force acting on the diameter. The difference between the pressure inside and outside the drop for its given surface area gives the net pressure forces acting on the drop. At equilibrium, the forces inside and outside balance each other, indicating that pressure inside the liquid surface is greater than the external pressure.

Equation2

In the case of an air bubble inside a liquid, this condition remains unchanged, and the pressure inside the air bubble is greater than the pressure in the surrounding liquid. The pressure difference across this air-liquid interface is proportional to curvature of the interface, which in turn determines the size of the bubble.

A cross-sectional view of a soap bubble shows two surfaces: one in contact with the air inside the bubble and the other in contact with the air outside the bubble. The pressure within the bubble is greater than the air pressure outside the surface. Also, the pressure within the bubble is lower than the air pressure inside the surface by the same quantity. Solving these two conditions gives the Young-Laplace relation for the soap bubble.

Equation3

Tags
Pressure DifferenceSurface TensionSpherical DropEquilibrium ForcesAir BubbleCurvatureYoung Laplace RelationNet Pressure ForcesSoap BubbleAir liquid Interface

Do Capítulo 13:

article

Now Playing

13.13 : Excesso de pressão dentro de uma gota e uma bolha

Mecânica dos Fluidos

1.5K Visualizações

article

13.1 : Características dos Fluidos

Mecânica dos Fluidos

3.4K Visualizações

article

13.2 : Densidade

Mecânica dos Fluidos

11.5K Visualizações

article

13.3 : Pressão dos Fluidos

Mecânica dos Fluidos

11.9K Visualizações

article

13.4 : Variação da pressão atmosférica

Mecânica dos Fluidos

1.8K Visualizações

article

13.5 : Lei de Pascal

Mecânica dos Fluidos

7.7K Visualizações

article

13.6 : Aplicação da Lei de Pascal

Mecânica dos Fluidos

7.6K Visualizações

article

13.7 : Manômetro

Mecânica dos Fluidos

2.7K Visualizações

article

13.8 : Empuxo

Mecânica dos Fluidos

5.8K Visualizações

article

13.9 : Princípio de Arquimedes

Mecânica dos Fluidos

7.4K Visualizações

article

13.10 : Densidade e Princípio de Arquimedes

Mecânica dos Fluidos

6.4K Visualizações

article

13.11 : Fluidos em aceleração

Mecânica dos Fluidos

945 Visualizações

article

13.12 : Tensão Superficial e Energia Superficial

Mecânica dos Fluidos

1.2K Visualizações

article

13.14 : Ângulo de contato

Mecânica dos Fluidos

11.3K Visualizações

article

13.15 : Subida de Líquido em um Tubo Capilar

Mecânica dos Fluidos

1.1K Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados