A z score (or standardized value) is measured in units of the standard deviation. It indicates how many standard deviations the value x is above (to the right of) or below (to the left of) the mean, μ. Values of x that are larger than the mean have positive z scores, and values of x that are smaller than the mean have negative z scores. If x equals the mean, then x has a zero z score. It is important to note that the mean of the z scores is zero, and the standard deviation is one.
z scores help find outliers or unusual values in any data distribution. According to the range rule of thumb, outliers or unusual values have z scores less than -2 or greater than +2.
Do Capítulo 1:
Now Playing
Chemical Applications of Statistical Analyses
312 Visualizações
Chemical Applications of Statistical Analyses
1.4K Visualizações
Chemical Applications of Statistical Analyses
2.9K Visualizações
Chemical Applications of Statistical Analyses
5.3K Visualizações
Chemical Applications of Statistical Analyses
1.4K Visualizações
Chemical Applications of Statistical Analyses
1.4K Visualizações
Chemical Applications of Statistical Analyses
790 Visualizações
Chemical Applications of Statistical Analyses
5.0K Visualizações
Chemical Applications of Statistical Analyses
489 Visualizações
Chemical Applications of Statistical Analyses
614 Visualizações
Chemical Applications of Statistical Analyses
448 Visualizações
Chemical Applications of Statistical Analyses
3.0K Visualizações
Chemical Applications of Statistical Analyses
3.3K Visualizações
Chemical Applications of Statistical Analyses
1.5K Visualizações
Chemical Applications of Statistical Analyses
1.4K Visualizações
See More
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados