É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
Alta capacidade seletiva 2 'acilação hidroxila analisados por extensão primer (SHAPE) utiliza um romance químico sondagem tecnologia, transcrição reversa, eletroforese capilar e software de predição de estrutura secundária para determinar as estruturas de RNAs de várias centenas a vários milhares de nucleotídeos em única resolução de nucleotídeos.
Compreender a função do RNA envolvido em processos biológicos requer um conhecimento profundo da estrutura do RNA. Para este fim, o método denominado "2 selectiva high-throughput" acilação hidroxilo analisados por extensão de iniciador ", ou forma, permite a previsão da estrutura secundária de ARN com um único nucleótido resolução. Esta abordagem utiliza agentes químicos que preferencialmente sondagem acilato de regiões de cadeia simples de RNA ou flexível, em solução aquosa. Os locais de modificação química são detectados através de transcrição reversa do RNA modificada, e os produtos desta reacção são fraccionados por electroforese capilar automatizada (CE). Uma vez que a transcriptase reversa pausas naqueles nucleótidos de RNA modificados pelos reagentes de forma, a biblioteca de ADNc resultante indirectamente mapeia os ribonucleótidos que são de cadeia simples, no contexto do ARN dobrado. Usando o software ShapeFinder, os produzidos por electrofogramas automatizado CE são processados e convertidos em nutabelas reactividade cleotide que são eles próprios convertidos em constrangimentos pseudo-A energia utilizada no RNAStructure (v5.3) algoritmo de predição. As estruturas de RNA bidimensionais obtidas pela combinação de sondagem com FORMA na previsão da estrutura secundária de RNA in silico foram encontrados para ser muito mais precisas do que as estruturas obtidas usando qualquer um dos métodos sozinho.
Para entender as funções dos RNAs catalíticos e não-codificantes envolvidos na regulação do splicing, tradução, replicação do vírus e câncer, um conhecimento detalhado da estrutura do RNA é necessária 1,2. Infelizmente, a previsão precisa de RNA dobrável apresenta um desafio formidável. Agentes de sondagem clássicas sofrem de muitas desvantagens, tais como a toxicidade, a cobertura incompleta de nucleótidos e / ou uma produção limitada de 100-150 nucleótidos por experimentação. Secundárias algoritmos de predição de estrutura nu são igualmente desvantajoso, devido a imprecisões resultantes da sua incapacidade de distinguir de forma eficaz entre as estruturas energeticamente semelhantes. Grande ARN, em particular, são também muitas vezes refractária aos métodos de determinação da estrutura 3D, tais como cristalografia de raios X e ressonância magnética nuclear (RMN), devido a sua flexibilidade conformacional e grandes quantidades de amostras altamente puros necessários para estas técnicas.
HSHAPE igh throughput resolve muitos desses problemas, fornecendo uma abordagem simples e eficaz para investigar as estruturas de grandes RNAs em resolução de nucleotídeo único. Além disso, os reagentes utilizados para a forma são seguras, fáceis de manusear e, em contraste com a maioria dos outros reagentes químicos de sondagem, reagir com todos os quatro ribonucleótidos. Estes reagentes também podem penetrar as membranas celulares, o que torna possível para sondar ARN na sua no contexto in vivo (s) 3. Desenvolvido originalmente nas semanas de laboratório 4, a forma tem sido usado para analisar uma grande variedade de RNAs, o exemplo mais notável sendo a determinação da estrutura secundária completa do ~ 9 kb de ARN do genoma do HIV-1 5. Outras realizações notáveis utilizando FORMA incluem elucidação das estruturas dos viróides infecciosas 6, RNAs humanos longos não codificantes 7, ribossomas de levedura Riboswitches 8 e 9, bem como para identificar os locais de ligação de proteína no virião associada ao HIV-1 RNA 3. While as variações originais e de alto rendimento do protocolo FORMA ter sido publicado anteriormente 10-12, o presente trabalho fornece uma descrição detalhada de determinação da estrutura secundária de RNA pela forma de alto rendimento, utilizando os oligonucleótidos fluorescentes, a Beckman Coulter CEQ 8000 Genetic Analyzer e (v5.3) software SHAPEfinder e RNAStructure. Detalhes técnicos inéditos e conselhos de resolução de problemas também estão incluídos.
Variações de SHAPE
A essência da SHAPE e suas variações, é a exposição de ARN, em solução aquosa em anidridos electrofílicos que acilar selectivamente 2'-2'-hidroxilo (OH) grupos ribose, produzindo adutos volumosos nos locais de modificação. Esta reacção química serve como um meio de interrogar a dinâmica estruturais do local de ARN, tal como os nucleótidos de cadeia simples são mais propensas a adoptar conformações propícios ao ataque electrof por estes reagentes, enquanto a base emparelhada ou arquitectura constrnucleótidos ained são menos reactivos ou 10. Os locais de formação de aduto são detectados por transcrição reversa a partir de primers iniciando fluorescente ou radiomarcado hibridizaram para um local específico no ARN modificado (a "(+)" reacção de extensão de iniciador). Quando a transcriptase reversa (RT) não atravessam os ribonucleótidos acilados, um conjunto de produtos de cDNA é produzida cujos comprimentos coincidem com os locais de modificação. Um controle, "(-)" iniciador de reacção de extensão, utilizando o RNA que não foram expostas ao reagente é também efectuada de modo que a terminação prematura da síntese de ADN (isto é, "stops"), devido à estrutura do RNA, RNA de cadeia inespecífica quebra, etc, podem. ser distinguidos pausando produzido por modificação química. Finalmente, duas reacções de sequenciação didesoxi-iniciadores a partir dos mesmos iniciadores são usados como marcadores para correlacionar nucleótidos reactivos com a sequência primária de ARN após electroforese.
Na aplicação original do SHAPE, o mesmo P-32 marcado na extremidade iniciador é utilizado para o (+), (-), e duas reacções de sequenciação. Os produtos destas reacções são carregadas em poços adjacentes de uma placa de gel de poliacrilamida a 5-8%, e fraccionados por electroforese em gel desnaturante de poliacrilamida (PAGE; Figura 1). A análise quantitativa de imagens de gel produzidas pela forma convencional, pode ser realizada utilizando SAFA, um software de análise de pegadas semi-automático 13.
Em contraste, a forma high-throughput utiliza primers marcados com fluorescência e eletroforese capilar automatizada. Especificamente, para cada região de ARN sob investigação, um conjunto de quatro iniciadores de ADN contendo uma sequência comum mas diferente 5 'marcadores fluorescentes deve ser sintetizado ou adquirido. Estes oligonucleotídeos diferente com rótulos servem para duas principais reações forma e duas reações de sequenciamento, os produtos de que são agrupados e fracionado / detectado por eletroforese capilar automatizada (CE). Whereas do perfil de reactividade de 100-150 nt de ARN pode ser obtida a partir de um conjunto de quatro reacções, usando a abordagem inicial, a forma de alta-resolução, de caudal permite 300-600 nt a partir de uma única amostra combinada 3. Até 8 conjuntos de reacções podem ser fraccionados em simultâneo, enquanto que até 96 amostras podem preparado para fraccionamento ao longo de 12 ensaios consecutivos, CE (Figura 2). Além disso, o software SHAPEfinder, desenvolvido para processar e analisar dados resultantes do CEQ e outros analisadores genéticos, é mais automatizado e requerem muito menos do que a intervenção do utilizador SAFA 13 ou outros pacotes de gel de análise.
Mais avançadas metodologias de alto rendimento surgiram recentemente, como PARS (análise paralela da estrutura RNA) 14 e Frag-seq (fragmento de seqüenciamento) 15, que utilizam enzimas específicas-estrutura, em vez de reagentes de alquilação em conjunto com a próxima geração de técnicas de sequenciamento para obter information sobre a estrutura do RNA. Apesar da atratividade dessas técnicas, as muitas limitações inerentes à nuclease sondagem ainda permanecem 16. Estes problemas podem ser contornados na sequenciação FORMA (FORMA-Seq) 17 de protocolo, em que a geração seguinte de sequenciação é precedido por modificação química e transcrição inversa do ARN de um modo semelhante ao realizado em forma convencional. Embora estes métodos podem representar o futuro da determinação da estrutura de RNA, é importante lembrar que a próxima geração de sequenciação é muito caro, e permanece disponível para muitos laboratórios.
SHAPE Análise de Dados
Os dados produzidos no analisador genético é apresentado sob a forma de um electroferograma, em que a intensidade de fluorescência da amostra (s) que flui através do detector capilar é representada em função de um índice de tempo de migração. Este lote converte a forma de vestígios de sobreposição correspondente a quatro canais de fluorescências usados para detectar os fluoróforos diferentes, e onde cada um dos traços é constituído por picos correspondentes aos produtos de cDNA ou de sequenciação individuais. Dados electroferograma é exportado a partir do analisador genético como um arquivo de texto delimitado por tabulação e importados para transformação ShapeFinder e software de análise 18.
ShapeFinder é inicialmente utilizada para realizar uma série de transformações matemáticas sobre os dados, para assegurar que os tempos de migração de pico e volumes refletem com precisão as identidades e as quantidades dos produtos de reacção, respectivamente. Os picos são então alinhados e integrados, e os resultados tabulados, juntamente com a sequência de ARN primário. Um "perfil de reactividade" para o segmento relevante de ARN é obtido por subtracção de valores de controlo a partir da (+) valores associados com cada ARN de nucleótidos, e normalizar os dados, conforme descrito abaixo. Este perfil é importado para RNAstructure (v5.3) 19,20 software, que converte o val reatividade normalizadaues em restrições pseudo-energia, que são incorporados ao algoritmo dobrável estrutura secundária do RNA. Combinando sondagem química e dobrando algoritmos desta forma melhora de forma significativa a precisão de previsão de estrutura em comparação com qualquer dos métodos isoladamente 12,21. A saída do RNAstructure (v5.3) inclui imagens de menor energia estruturas secundárias de ARN codificado por cores com o perfil de reactividade FORMA (s), bem como as mesmas estruturas em notação de ponto de colchete textual. Este último pode ser posteriormente transportados para o software dedicado à visualização gráfica da estrutura secundária de RNA tais como Varna PseudoViewer 22 e 23.
Figura 1. Fluxograma de RNA determinação da estrutura via SHAPE 4,10. (A) RNA may ser obtidas a partir de amostras biológicas ou por transcrição in vitro. (B) Dependendo da fonte, o RNA é dobrada ou de outra forma processados e modificado com o reagente FORMA. (C) A transcrição reversa utilizando iniciadores marcados com fluorescência ou radioactivamente. (D) são produtos de cDNA fracionado, quer através de eletroforese capilar à base de gel ou laje. (E) análise de fragmentos. (F) predição de estrutura de RNA. Clique aqui para ver a figura maior.
Figura 2. O carácter de elevado rendimento de SHAPE-Based permite a análise rápida de múltiplos ARN, e / ou múltiplos dos mesmos segmentos de RNA. (A) Representa como um RNA pode ser dividido em seções 300-600 NT (código de cores em verde, azul e vermelho) (B) Seções do RNA são detectados de forma independente usando diferentes conjuntos de primers fluorescentes (setas pretas) (C) conjuntos de As reacções foram reunidas e carregadas em poços A1, B1, C1, etc, respectivamente, proporcionando uma cobertura completa para a ~ 3 kb RNA1. Produtos de reacção de RNAs 2, 3, 4, etc, podem ser igualmente preparado para fracionamento em corridas eletroforéticas consecutivos. Clique aqui para ver a figura maior.
Desenho de primers e extensão do terminal do RNA 3 '
Para analisar longos RNAs pela forma de alto rendimento, uma série de sítios de hibridação do iniciador deve ser seleccionada de tal modo que (i) são separados por 300 nt ~, (ii) são de 20-30 nt de comprimento, e (iii) que o RNA / híbridos de DNA produzidos por tratamento térmico de ADN para estes locais têm uma temperatura de fusão esperada de> 50 ° C. Além disso, os segmentos de RNA que estão previstos para serem altamente estruturado deve ser evitado, embora fazer essa determinação requer algum conhecimento prévio da estrutura do ARN, que é frequentemente indisponível. Iniciadores de ADN que hibridizam com estes locais deveriam então ser concebido, tendo o cuidado de assegurar que não seria esperado para formar dímeros estáveis ou estruturas secundárias intracadeia.
Uma vez concebidos, os conjuntos de iniciadores deve ser ou comprados (por exemplo, a partir de DNA integrado Technologies, Ames, Iowa) ou sintetizados 24,25. Os iniciadores marcados com 5'-Cy5, Cy5.5,WellRedD2 (Beckman Coulter) e IRDye800 (Lycor) / WellRedD1 (Beckman Coulter) são os mais adequados para a Beckman Coulter 8000 CEQ, proporcionando boa intensidade de sinal, minimizando a interferência. Os oligonucleótidos marcados podem ser armazenados indefinidamente em pequenas aliquotas de 10 uM a -20 ° C; evitar congelamento / descongelamento repetidos.
Usando primers desenhados desta maneira, é possível obter os dados da forma de praticamente todo um ARN de qualquer comprimento. No entanto, a sequência em ou perto do terminal 3 'de um RNA é sempre inacessível para a forma, a menos que o ARN é modificado para conter a 3' com a extensão do terminal (por exemplo, uma "cassete de estrutura"), ao qual pode ser um iniciador hibridado 4.
RNA Preparação através de Eletroforese Capilar
Embora o ARN a partir de amostras biológicas podem ser utilizados para a forma de alto rendimento, o protocolo fornecido aqui é optimizada para o ARN produzido por transcrição in vitro. Comercial trakits nscription como MegaShortScript (Ambion) usado em conjunto com MegaClear colunas de purificação de RNA (Ambion) são bem adequados para a geração de grandes quantidades de RNA puros. RNAs deve ser armazenado em tampão TE compreendida entre -20 ° C e -80 ° C. Para melhores resultados, deve aparecer RNAs homogéneo por electroforese em gel tanto de poliacrilamida desnaturante e não desnaturante.
1. RNA Folding
2. Modificação química de ARN
Bem caracterizados, reagentes SHAPE electrofílicos incluem anidrido isatóico (IA), de anidrido N-methylisatoic (NMIA), anidrido 1-metil-7-nitro-isatóico (1M7) 26, e cianeto de benzoílo (BzCN) 27. Destes, o mais comumente usado para a forma high-throughput são 1M7 e NMIA, e apenas este último está disponível comercialmente (Life Technologies). A concentração final do reagente de modificação deve ser optimizada para cada RNA para se obter "um único hit" cinética de modificação, isto é, a condição na qual a maioria dos RNAs em solução uma vez que são modificados na região de ARN a ser analisado 11. Esta concentração óptima pode ser determinada através da realização de múltiplas reacções em que a concentração de reagente é variada através do intervalo (s) indicado na tabela abaixo na Secção 2.1. Utilizar a concentração do reagente, que produz um sinal facilmente detectável enquanto minimizing a diferença na intensidade de sinal entre os produtos de síntese de ADN longas e curtas (por exemplo, Figura 3).
Figura 3. Electrofogramas SHAPE produzidos a partir de um RNA de 360 nt ~ tratada com (A) 0 (B) 2,5 mM ou (C) a 10 mM. 1M7 Todos electrofogramas são mostrados na mesma escala. Azul, vestígios verde, vermelho e negro correspondem ao (+) Os produtos de reacção (Cy5), (-) Os produtos de reacção (Cy5.5), e as duas escadas de sequenciação (D2 WellRed e IRDye800), respectivamente. Os RNA utilizados para produzir imagem (B) tem sido tratada com a quantidade ideal de 1M7, demonstrando boa resolução de pico e intensidade, com decaimento de sinal mínima em todo o trace (esquerda). Leia comprimento é máxima sob estas condições. Em contraste, a ausência de int médioensity, picos bem resolvidos em (A) sugere uma concentração sub-ótima de 1M7. Por outro lado, o decaimento do sinal evidente em (C) indica que a cinética hit único não é observada, e o RNA é sobre-modificados. Em tais casos, especialmente quando a TR não seria de esperar para encontrar o terminal 5 'do molde de ARN, leia comprimento será de qualidade inferior.
Reagente | 10X concentração óptima (em DMSO) | Tempo paradegradação completa do reagente 27 |
NMIA | 10-100 mM | ~ 20 min |
1M7 | 10-50 mM | 70 seg |
3. Transcrição reversa
Este passo gera os produtos de cDNA marcadas com fluorescência que são usados para identificar indirectamente o grau em que os nucleótidos de RNA foram modificadas por um reagente FORMA. Para a forma, o desempenho do Superscript III (Invitrogen) RT foi superior a todos os outros RTs testado, e é a enzima escolhido para uso com o presenteprotocolo. Oligonucleotídeos marcados com Cy5 e Cy5.5 são usados para preparar o (+) e (-) reações, respectivamente. Para RNAs curtos, os iniciadores são hibridados com um iniciador 3 'de extensão terminal do ARN nativo (por exemplo, uma "cassete de estrutura"), a fim de obter informação sobre o terminal 3' 4 Atenção:. Deste ponto através do CE, as amostras devem ser protegidos contra luz.
Seqüenciamento escadas servem como marcadores para a determinação da posição dos nucleotídeos durante o processamento de dados. Estes são gerados utilizando um kit de sequenciação do ciclo de USB (# 78500), ADN possuindo a mesma sequência que o ARN a ser estudada, e primers marcados com D2 WellRed ou D1/Lycor 800. Tipicamente, o ADN utilizado nesta reacção terá que ser utilizado como um modelo para a transcrição de RNA em causa. Embora o protocolo de reacção aqui apresentado se assemelha a recomendada pelo fabricante do kit, a reacção foi reduzida até várias vezes. Enquanto ddA e ddT são usados como terminadores de cadeia nas reacções descritas abaixo, qualquer par de terminais pode ser usada para gerar as escadas de sequenciação.
5. Fracionamento de produtos de reacção por eletroforese capilar
A electroforese capilar permite simultâneaseparação dos produtos de síntese de cDNA a partir de quatro reacções combinadas numa única amostra. Oito amostras pode ser fraccionada em simultâneo, enquanto que até 96 amostras podem ser fraccionados durante um único ensaio (Figura 2).
Idealmente, fora de primer e forte-stop picos, os sinais para cada pico em todos os quatro electroferograma tcorridas deve estar na gama linear, uma queda gradual no sinal é aceitável. Às vezes, porém, os grandes picos (pontos) são evidentes mesmo na reação controle, e estes podem interferir com o processamento de dados subseqüente. CDNAs truncadas que dão origem a estes picos pode ser o resultado de um obstáculo natural durante a transcrição reversa (por exemplo, a estrutura secundária de RNA) ou a degradação de RNA. No primeiro caso, os aditivos, tais como a betaína pode melhorar a processabilidade e reduzir RT RT parando terminação / prematura.
Informática
ShapeFinder software permite ao usuário visualizar e transformar traços CE e convertê-los em perfis de reatividade SHAPE 18. Uma vez que os valores de reatividade são tabulados, eles são normalizados e importados para RNAStructure (v5.3) para gerar e refinar os modelos estruturais secundárias.
6. ShapeFinder Software
Uma extensão do BaseFinder traço processamento platformulário 29, a versão publicada ShapeFinder está disponível gratuitamente para uso não-comercial 18. Instruções detalhadas para manipulação de dados em ShapeFinder são fornecidos com a documentação do software.
Nota: A análise dos dados é crítica para a exactidão de forma e, em algumas considerações são muito importantes durante esta análise, incluindo:
7. Normalização de dados
Para incorporar perfis de reatividade de nucleotídeos no algoritmo estrutura secundária utilizada por (v5.3) RNAStructure software, e / ou comparar os perfis de RNAs intimamente relacionados, Dados da Forma deve ser normalizado de forma padronizada 12. Isto envolve (i) a partir de valores extremos excluindo cálculos subsequentes, (ii) a determinação da reactividade "máxima eficaz" (ou seja, a média de 8%, o mais alto valor de reactividade, excluindo outliers), e (iii) dividindo normalização todos os valores de reactividade o "máximo efectivo", como se segue:
8. Modelagem de Dados
(V5.3) RNAstructure software é utilizada para prever a estrutura secundária de RNA experimentalmente suportada (s), utilizando as restrições energéticas pseudo-livres derivados de análise de formas 19. O software proporciona representações gráficas das melhores estruturas de energia 2D de RNA, bem como representação textual destas estruturas em notação de ponto-suporte. Este último pode ser importado em um visualizador de estrutura RNA de preferência do usuário, por exemplo, Pseudoviewer 23 ou 22 de Varna, para produzir imagens com qualidade de publicação.
Nota: Cuidados devem ser tomados quando se considera as estruturas produzidas pelo (v5.3) software RNAstructure. Por exemplo, o software não pode resolver interações terciárias, tais como pseudoknots e loops de beijo, nem pode distinguir se a falta dereatividade em uma determinada região é devido à proteção emparelhamento de bases ou estérico por proteínas ligadas. Como consequência, estes factores, em conjunto com as energias reportados para as estruturas individuais, deve ser considerado quando se apresenta um modelo estrutural definitiva.
RNA contendo o HIV-1 elemento de resposta rev (RRE) e uma extremidade 3 'da cassete estrutura do terminal 4 foi preparado a partir de um plasmídeo linearizado por transcrição in vitro, depois do que foi dobrado por meio de aquecimento, arrefecimento, e incubação a 37 ° C, na presença de MgCl 2. O ARN foi exposto a NMIA e depois a transcrição reversa a partir de um iniciador de ADN 5 '-fim-marcadas hibridadas com cassete de estrutura do terminal 3'. A bibliotec...
Apresentamos aqui um protocolo detalhado para SHAPE high-throughput, uma técnica que permite a determinação da estrutura secundária a resolução de nucleotídeo único para RNAs de qualquer tamanho. Além disso, o acoplamento de dados experimentais com SHAPE secundárias algoritmos de previsão de estrutura facilita a geração de modelos de RNA 2D com um maior grau de precisão do que é possível com qualquer um dos métodos sozinho. A combinação de iniciadores marcados com fluorescência e automatizado CE prop...
Não há conflitos de interesse declarados.
S. Lusvarghi, J. Sztuba-Solinska, KJ Purzycka, JW Rausch e SFJ Le Grice são apoiados pelo Programa do National Cancer Institute, National Institutes of Health, EUA Research intramuros.
Name | Company | Catalog Number | Comments |
REAGENTS | |||
N-methylisatoic anhydride (NMIA) | Life technologies | M25 | Dissolve in anhydrous DMSO |
1-methyl-t-nitroisatoic anhydride (1M7) | see ref. 22 | ||
Superscript III Reverse Transcriptase | Life technologies | 18080044 | 10,000 units |
Thermo sequenase cycle sequencing kit | Affymetrix | 78500 | |
Materials provided by the user | |||
RNA of interest | 6 pmol per reaction (the limit of detection will be determined by the instrument) | ||
Sets of four 5' labeled primers (Cy5, Cy5.5, WellRed D2 and WellRed D1/Licor IR800) | Primers are complementary to the RNA and are used in reverse transcription and sequencing reactions. The listed fluorophores are optimal for the Beckman Coulter 8000 CEQ. Primers may be purchased or synthesized in house. | ||
DNA template | DNA is used for sequencing reactions, and must contain the sequence of the RNA being studied - including any 3'terminal extension, if present. Where applicable, it is often convenient to use the RNA transcription template. | ||
Buffers | |||
10x RNA renaturation buffer | 100 mM Tris-HCl pH 8.0, 1 M KCl, 1 mM EDTA | ||
5X RNA folding buffer | 200 mM Tris-HCl pH 8.0, 25 mM MgCl2, 2.5 mM EDTA, 650 mM KCl. (This buffer might be changed depending on the case (e.g. pH, EDTA, Mg, RNase inhibitor) | ||
2.5X RT mix | 4 μl 5X buffer, 1 μl 100 mM DTT, 1.5 μl water,1 μl 10 mM dNTPs, 0.5 μl SuperScript III. Note that the 5X buffer and 100 mM DTT are provided with purchase of SuperScript III (Invitrogen). | ||
GenomeLab Sample Loading Solution (Beckman Coulter) | Attention: Avoid multiple freeze-thaw cycles | ||
EQUIPMENT | |||
Capillary electrophoresis | Beckman | CEQ8000 | |
Thermocycler | varies |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados